Struct bevy::render::render_phase::TrackedRenderPass

pub struct TrackedRenderPass<'a> { /* private fields */ }
Expand description

A [RenderPass], which tracks the current pipeline state to skip redundant operations.

It is used to set the current RenderPipeline, BindGroups and Buffers. After all requirements are specified, draw calls can be issued.

Implementations§

§

impl<'a> TrackedRenderPass<'a>

pub fn new(device: &RenderDevice, pass: RenderPass<'a>) -> TrackedRenderPass<'a>

Tracks the supplied render pass.

pub fn wgpu_pass(&mut self) -> &mut RenderPass<'a>

Returns the wgpu [RenderPass].

pub fn set_render_pipeline(&mut self, pipeline: &'a RenderPipeline)

Sets the active RenderPipeline.

Subsequent draw calls will exhibit the behavior defined by the pipeline.

Examples found in repository?
examples/shader/post_processing.rs (line 211)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // Get the pipeline resource that contains the global data we need
        // to create the render pipeline
        let post_process_pipeline = world.resource::<PostProcessPipeline>();

        // The pipeline cache is a cache of all previously created pipelines.
        // It is required to avoid creating a new pipeline each frame,
        // which is expensive due to shader compilation.
        let pipeline_cache = world.resource::<PipelineCache>();

        // Get the pipeline from the cache
        let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
        else {
            return Ok(());
        };

        // Get the settings uniform binding
        let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
        let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
            return Ok(());
        };

        // This will start a new "post process write", obtaining two texture
        // views from the view target - a `source` and a `destination`.
        // `source` is the "current" main texture and you _must_ write into
        // `destination` because calling `post_process_write()` on the
        // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
        // texture to the `destination` texture. Failing to do so will cause
        // the current main texture information to be lost.
        let post_process = view_target.post_process_write();

        // The bind_group gets created each frame.
        //
        // Normally, you would create a bind_group in the Queue set,
        // but this doesn't work with the post_process_write().
        // The reason it doesn't work is because each post_process_write will alternate the source/destination.
        // The only way to have the correct source/destination for the bind_group
        // is to make sure you get it during the node execution.
        let bind_group = render_context.render_device().create_bind_group(
            "post_process_bind_group",
            &post_process_pipeline.layout,
            // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
            &BindGroupEntries::sequential((
                // Make sure to use the source view
                post_process.source,
                // Use the sampler created for the pipeline
                &post_process_pipeline.sampler,
                // Set the settings binding
                settings_binding.clone(),
            )),
        );

        // Begin the render pass
        let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
            label: Some("post_process_pass"),
            color_attachments: &[Some(RenderPassColorAttachment {
                // We need to specify the post process destination view here
                // to make sure we write to the appropriate texture.
                view: post_process.destination,
                resolve_target: None,
                ops: Operations::default(),
            })],
            depth_stencil_attachment: None,
            timestamp_writes: None,
            occlusion_query_set: None,
        });

        // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
        // using the pipeline/bind_group created above
        render_pass.set_render_pipeline(pipeline);
        render_pass.set_bind_group(0, &bind_group, &[]);
        render_pass.draw(0..3, 0..1);

        Ok(())
    }

pub fn set_bind_group( &mut self, index: usize, bind_group: &'a BindGroup, dynamic_uniform_indices: &[u32] )

Sets the active bind group for a given bind group index. The bind group layout in the active pipeline when any draw() function is called must match the layout of this bind group.

If the bind group have dynamic offsets, provide them in binding order. These offsets have to be aligned to WgpuLimits::min_uniform_buffer_offset_alignment or WgpuLimits::min_storage_buffer_offset_alignment appropriately.

Examples found in repository?
examples/shader/post_processing.rs (line 212)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // Get the pipeline resource that contains the global data we need
        // to create the render pipeline
        let post_process_pipeline = world.resource::<PostProcessPipeline>();

        // The pipeline cache is a cache of all previously created pipelines.
        // It is required to avoid creating a new pipeline each frame,
        // which is expensive due to shader compilation.
        let pipeline_cache = world.resource::<PipelineCache>();

        // Get the pipeline from the cache
        let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
        else {
            return Ok(());
        };

        // Get the settings uniform binding
        let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
        let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
            return Ok(());
        };

        // This will start a new "post process write", obtaining two texture
        // views from the view target - a `source` and a `destination`.
        // `source` is the "current" main texture and you _must_ write into
        // `destination` because calling `post_process_write()` on the
        // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
        // texture to the `destination` texture. Failing to do so will cause
        // the current main texture information to be lost.
        let post_process = view_target.post_process_write();

        // The bind_group gets created each frame.
        //
        // Normally, you would create a bind_group in the Queue set,
        // but this doesn't work with the post_process_write().
        // The reason it doesn't work is because each post_process_write will alternate the source/destination.
        // The only way to have the correct source/destination for the bind_group
        // is to make sure you get it during the node execution.
        let bind_group = render_context.render_device().create_bind_group(
            "post_process_bind_group",
            &post_process_pipeline.layout,
            // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
            &BindGroupEntries::sequential((
                // Make sure to use the source view
                post_process.source,
                // Use the sampler created for the pipeline
                &post_process_pipeline.sampler,
                // Set the settings binding
                settings_binding.clone(),
            )),
        );

        // Begin the render pass
        let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
            label: Some("post_process_pass"),
            color_attachments: &[Some(RenderPassColorAttachment {
                // We need to specify the post process destination view here
                // to make sure we write to the appropriate texture.
                view: post_process.destination,
                resolve_target: None,
                ops: Operations::default(),
            })],
            depth_stencil_attachment: None,
            timestamp_writes: None,
            occlusion_query_set: None,
        });

        // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
        // using the pipeline/bind_group created above
        render_pass.set_render_pipeline(pipeline);
        render_pass.set_bind_group(0, &bind_group, &[]);
        render_pass.draw(0..3, 0..1);

        Ok(())
    }

pub fn set_vertex_buffer( &mut self, slot_index: usize, buffer_slice: BufferSlice<'a> )

Assign a vertex buffer to a slot.

Subsequent calls to draw and draw_indexed on this TrackedRenderPass will use buffer as one of the source vertex buffers.

The slot_index refers to the index of the matching descriptor in VertexState::buffers.

Examples found in repository?
examples/shader/shader_instancing.rs (line 259)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    fn render<'w>(
        item: &P,
        _view: (),
        instance_buffer: Option<&'w InstanceBuffer>,
        (meshes, render_mesh_instances): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(item.entity())
        else {
            return RenderCommandResult::Failure;
        };
        let Some(gpu_mesh) = meshes.into_inner().get(mesh_instance.mesh_asset_id) else {
            return RenderCommandResult::Failure;
        };
        let Some(instance_buffer) = instance_buffer else {
            return RenderCommandResult::Failure;
        };

        pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
        pass.set_vertex_buffer(1, instance_buffer.buffer.slice(..));

        match &gpu_mesh.buffer_info {
            GpuBufferInfo::Indexed {
                buffer,
                index_format,
                count,
            } => {
                pass.set_index_buffer(buffer.slice(..), 0, *index_format);
                pass.draw_indexed(0..*count, 0, 0..instance_buffer.length as u32);
            }
            GpuBufferInfo::NonIndexed => {
                pass.draw(0..gpu_mesh.vertex_count, 0..instance_buffer.length as u32);
            }
        }
        RenderCommandResult::Success
    }

pub fn set_index_buffer( &mut self, buffer_slice: BufferSlice<'a>, offset: u64, index_format: IndexFormat )

Sets the active index buffer.

Subsequent calls to TrackedRenderPass::draw_indexed will use the buffer referenced by buffer_slice as the source index buffer.

Examples found in repository?
examples/shader/shader_instancing.rs (line 268)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    fn render<'w>(
        item: &P,
        _view: (),
        instance_buffer: Option<&'w InstanceBuffer>,
        (meshes, render_mesh_instances): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(item.entity())
        else {
            return RenderCommandResult::Failure;
        };
        let Some(gpu_mesh) = meshes.into_inner().get(mesh_instance.mesh_asset_id) else {
            return RenderCommandResult::Failure;
        };
        let Some(instance_buffer) = instance_buffer else {
            return RenderCommandResult::Failure;
        };

        pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
        pass.set_vertex_buffer(1, instance_buffer.buffer.slice(..));

        match &gpu_mesh.buffer_info {
            GpuBufferInfo::Indexed {
                buffer,
                index_format,
                count,
            } => {
                pass.set_index_buffer(buffer.slice(..), 0, *index_format);
                pass.draw_indexed(0..*count, 0, 0..instance_buffer.length as u32);
            }
            GpuBufferInfo::NonIndexed => {
                pass.draw(0..gpu_mesh.vertex_count, 0..instance_buffer.length as u32);
            }
        }
        RenderCommandResult::Success
    }

pub fn draw(&mut self, vertices: Range<u32>, instances: Range<u32>)

Draws primitives from the active vertex buffer(s).

The active vertex buffer(s) can be set with TrackedRenderPass::set_vertex_buffer.

Examples found in repository?
examples/shader/shader_instancing.rs (line 272)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    fn render<'w>(
        item: &P,
        _view: (),
        instance_buffer: Option<&'w InstanceBuffer>,
        (meshes, render_mesh_instances): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(item.entity())
        else {
            return RenderCommandResult::Failure;
        };
        let Some(gpu_mesh) = meshes.into_inner().get(mesh_instance.mesh_asset_id) else {
            return RenderCommandResult::Failure;
        };
        let Some(instance_buffer) = instance_buffer else {
            return RenderCommandResult::Failure;
        };

        pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
        pass.set_vertex_buffer(1, instance_buffer.buffer.slice(..));

        match &gpu_mesh.buffer_info {
            GpuBufferInfo::Indexed {
                buffer,
                index_format,
                count,
            } => {
                pass.set_index_buffer(buffer.slice(..), 0, *index_format);
                pass.draw_indexed(0..*count, 0, 0..instance_buffer.length as u32);
            }
            GpuBufferInfo::NonIndexed => {
                pass.draw(0..gpu_mesh.vertex_count, 0..instance_buffer.length as u32);
            }
        }
        RenderCommandResult::Success
    }
More examples
Hide additional examples
examples/shader/post_processing.rs (line 213)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // Get the pipeline resource that contains the global data we need
        // to create the render pipeline
        let post_process_pipeline = world.resource::<PostProcessPipeline>();

        // The pipeline cache is a cache of all previously created pipelines.
        // It is required to avoid creating a new pipeline each frame,
        // which is expensive due to shader compilation.
        let pipeline_cache = world.resource::<PipelineCache>();

        // Get the pipeline from the cache
        let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
        else {
            return Ok(());
        };

        // Get the settings uniform binding
        let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
        let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
            return Ok(());
        };

        // This will start a new "post process write", obtaining two texture
        // views from the view target - a `source` and a `destination`.
        // `source` is the "current" main texture and you _must_ write into
        // `destination` because calling `post_process_write()` on the
        // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
        // texture to the `destination` texture. Failing to do so will cause
        // the current main texture information to be lost.
        let post_process = view_target.post_process_write();

        // The bind_group gets created each frame.
        //
        // Normally, you would create a bind_group in the Queue set,
        // but this doesn't work with the post_process_write().
        // The reason it doesn't work is because each post_process_write will alternate the source/destination.
        // The only way to have the correct source/destination for the bind_group
        // is to make sure you get it during the node execution.
        let bind_group = render_context.render_device().create_bind_group(
            "post_process_bind_group",
            &post_process_pipeline.layout,
            // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
            &BindGroupEntries::sequential((
                // Make sure to use the source view
                post_process.source,
                // Use the sampler created for the pipeline
                &post_process_pipeline.sampler,
                // Set the settings binding
                settings_binding.clone(),
            )),
        );

        // Begin the render pass
        let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
            label: Some("post_process_pass"),
            color_attachments: &[Some(RenderPassColorAttachment {
                // We need to specify the post process destination view here
                // to make sure we write to the appropriate texture.
                view: post_process.destination,
                resolve_target: None,
                ops: Operations::default(),
            })],
            depth_stencil_attachment: None,
            timestamp_writes: None,
            occlusion_query_set: None,
        });

        // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
        // using the pipeline/bind_group created above
        render_pass.set_render_pipeline(pipeline);
        render_pass.set_bind_group(0, &bind_group, &[]);
        render_pass.draw(0..3, 0..1);

        Ok(())
    }

pub fn draw_indexed( &mut self, indices: Range<u32>, base_vertex: i32, instances: Range<u32> )

Draws indexed primitives using the active index buffer and the active vertex buffer(s).

The active index buffer can be set with TrackedRenderPass::set_index_buffer, while the active vertex buffer(s) can be set with TrackedRenderPass::set_vertex_buffer.

Examples found in repository?
examples/shader/shader_instancing.rs (line 269)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    fn render<'w>(
        item: &P,
        _view: (),
        instance_buffer: Option<&'w InstanceBuffer>,
        (meshes, render_mesh_instances): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(item.entity())
        else {
            return RenderCommandResult::Failure;
        };
        let Some(gpu_mesh) = meshes.into_inner().get(mesh_instance.mesh_asset_id) else {
            return RenderCommandResult::Failure;
        };
        let Some(instance_buffer) = instance_buffer else {
            return RenderCommandResult::Failure;
        };

        pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));
        pass.set_vertex_buffer(1, instance_buffer.buffer.slice(..));

        match &gpu_mesh.buffer_info {
            GpuBufferInfo::Indexed {
                buffer,
                index_format,
                count,
            } => {
                pass.set_index_buffer(buffer.slice(..), 0, *index_format);
                pass.draw_indexed(0..*count, 0, 0..instance_buffer.length as u32);
            }
            GpuBufferInfo::NonIndexed => {
                pass.draw(0..gpu_mesh.vertex_count, 0..instance_buffer.length as u32);
            }
        }
        RenderCommandResult::Success
    }

pub fn draw_indirect( &mut self, indirect_buffer: &'a Buffer, indirect_offset: u64 )

Draws primitives from the active vertex buffer(s) based on the contents of the indirect_buffer.

The active vertex buffers can be set with TrackedRenderPass::set_vertex_buffer.

The structure expected in indirect_buffer is the following:

#[repr(C)]
struct DrawIndirect {
    vertex_count: u32, // The number of vertices to draw.
    instance_count: u32, // The number of instances to draw.
    first_vertex: u32, // The Index of the first vertex to draw.
    first_instance: u32, // The instance ID of the first instance to draw.
    // has to be 0, unless [`Features::INDIRECT_FIRST_INSTANCE`] is enabled.
}

pub fn draw_indexed_indirect( &mut self, indirect_buffer: &'a Buffer, indirect_offset: u64 )

Draws indexed primitives using the active index buffer and the active vertex buffers, based on the contents of the indirect_buffer.

The active index buffer can be set with TrackedRenderPass::set_index_buffer, while the active vertex buffers can be set with TrackedRenderPass::set_vertex_buffer.

The structure expected in indirect_buffer is the following:

#[repr(C)]
struct DrawIndexedIndirect {
    vertex_count: u32, // The number of vertices to draw.
    instance_count: u32, // The number of instances to draw.
    first_index: u32, // The base index within the index buffer.
    vertex_offset: i32, // The value added to the vertex index before indexing into the vertex buffer.
    first_instance: u32, // The instance ID of the first instance to draw.
    // has to be 0, unless [`Features::INDIRECT_FIRST_INSTANCE`] is enabled.
}

pub fn multi_draw_indirect( &mut self, indirect_buffer: &'a Buffer, indirect_offset: u64, count: u32 )

Dispatches multiple draw calls from the active vertex buffer(s) based on the contents of the indirect_buffer.count draw calls are issued.

The active vertex buffers can be set with TrackedRenderPass::set_vertex_buffer.

indirect_buffer should contain count tightly packed elements of the following structure:

#[repr(C)]
struct DrawIndirect {
    vertex_count: u32, // The number of vertices to draw.
    instance_count: u32, // The number of instances to draw.
    first_vertex: u32, // The Index of the first vertex to draw.
    first_instance: u32, // The instance ID of the first instance to draw.
    // has to be 0, unless [`Features::INDIRECT_FIRST_INSTANCE`] is enabled.
}

pub fn multi_draw_indirect_count( &mut self, indirect_buffer: &'a Buffer, indirect_offset: u64, count_buffer: &'a Buffer, count_offset: u64, max_count: u32 )

Dispatches multiple draw calls from the active vertex buffer(s) based on the contents of the indirect_buffer. The count buffer is read to determine how many draws to issue.

The indirect buffer must be long enough to account for max_count draws, however only count elements will be read, where count is the value read from count_buffer capped at max_count.

The active vertex buffers can be set with TrackedRenderPass::set_vertex_buffer.

indirect_buffer should contain count tightly packed elements of the following structure:

#[repr(C)]
struct DrawIndirect {
    vertex_count: u32, // The number of vertices to draw.
    instance_count: u32, // The number of instances to draw.
    first_vertex: u32, // The Index of the first vertex to draw.
    first_instance: u32, // The instance ID of the first instance to draw.
    // has to be 0, unless [`Features::INDIRECT_FIRST_INSTANCE`] is enabled.
}

pub fn multi_draw_indexed_indirect( &mut self, indirect_buffer: &'a Buffer, indirect_offset: u64, count: u32 )

Dispatches multiple draw calls from the active index buffer and the active vertex buffers, based on the contents of the indirect_buffer. count draw calls are issued.

The active index buffer can be set with TrackedRenderPass::set_index_buffer, while the active vertex buffers can be set with TrackedRenderPass::set_vertex_buffer.

indirect_buffer should contain count tightly packed elements of the following structure:

#[repr(C)]
struct DrawIndexedIndirect {
    vertex_count: u32, // The number of vertices to draw.
    instance_count: u32, // The number of instances to draw.
    first_index: u32, // The base index within the index buffer.
    vertex_offset: i32, // The value added to the vertex index before indexing into the vertex buffer.
    first_instance: u32, // The instance ID of the first instance to draw.
    // has to be 0, unless [`Features::INDIRECT_FIRST_INSTANCE`] is enabled.
}

pub fn multi_draw_indexed_indirect_count( &mut self, indirect_buffer: &'a Buffer, indirect_offset: u64, count_buffer: &'a Buffer, count_offset: u64, max_count: u32 )

Dispatches multiple draw calls from the active index buffer and the active vertex buffers, based on the contents of the indirect_buffer. The count buffer is read to determine how many draws to issue.

The indirect buffer must be long enough to account for max_count draws, however only count elements will be read, where count is the value read from count_buffer capped at max_count.

The active index buffer can be set with TrackedRenderPass::set_index_buffer, while the active vertex buffers can be set with TrackedRenderPass::set_vertex_buffer.

indirect_buffer should contain count tightly packed elements of the following structure:

#[repr(C)]
struct DrawIndexedIndirect {
    vertex_count: u32, // The number of vertices to draw.
    instance_count: u32, // The number of instances to draw.
    first_index: u32, // The base index within the index buffer.
    vertex_offset: i32, // The value added to the vertex index before indexing into the vertex buffer.
    first_instance: u32, // The instance ID of the first instance to draw.
    // has to be 0, unless [`Features::INDIRECT_FIRST_INSTANCE`] is enabled.
}

pub fn set_stencil_reference(&mut self, reference: u32)

Sets the stencil reference.

Subsequent stencil tests will test against this value.

pub fn set_scissor_rect(&mut self, x: u32, y: u32, width: u32, height: u32)

Sets the scissor region.

Subsequent draw calls will discard any fragments that fall outside this region.

pub fn set_push_constants( &mut self, stages: ShaderStages, offset: u32, data: &[u8] )

Set push constant data.

Features::PUSH_CONSTANTS must be enabled on the device in order to call these functions.

pub fn set_viewport( &mut self, x: f32, y: f32, width: f32, height: f32, min_depth: f32, max_depth: f32 )

Set the rendering viewport.

Subsequent draw calls will be projected into that viewport.

pub fn set_camera_viewport(&mut self, viewport: &Viewport)

Set the rendering viewport to the given camera Viewport.

Subsequent draw calls will be projected into that viewport.

pub fn insert_debug_marker(&mut self, label: &str)

Insert a single debug marker.

This is a GPU debugging feature. This has no effect on the rendering itself.

pub fn push_debug_group(&mut self, label: &str)

Start a new debug group.

Push a new debug group over the internal stack. Subsequent render commands and debug markers are grouped into this new group, until pop_debug_group is called.

pass.push_debug_group("Render the car");
// [setup pipeline etc...]
pass.draw(0..64, 0..1);
pass.pop_debug_group();

Note that push_debug_group and pop_debug_group must always be called in pairs.

This is a GPU debugging feature. This has no effect on the rendering itself.

pub fn pop_debug_group(&mut self)

End the current debug group.

Subsequent render commands and debug markers are not grouped anymore in this group, but in the previous one (if any) or the default top-level one if the debug group was the last one on the stack.

Note that push_debug_group and pop_debug_group must always be called in pairs.

This is a GPU debugging feature. This has no effect on the rendering itself.

pub fn set_blend_constant(&mut self, color: LinearRgba)

Sets the blend color as used by some of the blending modes.

Subsequent blending tests will test against this value.

Auto Trait Implementations§

§

impl<'a> Freeze for TrackedRenderPass<'a>

§

impl<'a> !RefUnwindSafe for TrackedRenderPass<'a>

§

impl<'a> Send for TrackedRenderPass<'a>

§

impl<'a> Sync for TrackedRenderPass<'a>

§

impl<'a> Unpin for TrackedRenderPass<'a>

§

impl<'a> !UnwindSafe for TrackedRenderPass<'a>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Settings for T
where T: 'static + Send + Sync,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSendSync for T
where T: WasmNotSend + WasmNotSync,

§

impl<T> WasmNotSync for T
where T: Sync,