Struct bevy::render::extract_component::ComponentUniforms

pub struct ComponentUniforms<C>
where C: Component + ShaderType,
{ /* private fields */ }
Expand description

Stores all uniforms of the component type.

Implementations§

§

impl<C> ComponentUniforms<C>
where C: Component + ShaderType,

pub fn uniforms(&self) -> &DynamicUniformBuffer<C>

Examples found in repository?
examples/shader/post_processing.rs (line 160)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // Get the pipeline resource that contains the global data we need
        // to create the render pipeline
        let post_process_pipeline = world.resource::<PostProcessPipeline>();

        // The pipeline cache is a cache of all previously created pipelines.
        // It is required to avoid creating a new pipeline each frame,
        // which is expensive due to shader compilation.
        let pipeline_cache = world.resource::<PipelineCache>();

        // Get the pipeline from the cache
        let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
        else {
            return Ok(());
        };

        // Get the settings uniform binding
        let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
        let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
            return Ok(());
        };

        // This will start a new "post process write", obtaining two texture
        // views from the view target - a `source` and a `destination`.
        // `source` is the "current" main texture and you _must_ write into
        // `destination` because calling `post_process_write()` on the
        // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
        // texture to the `destination` texture. Failing to do so will cause
        // the current main texture information to be lost.
        let post_process = view_target.post_process_write();

        // The bind_group gets created each frame.
        //
        // Normally, you would create a bind_group in the Queue set,
        // but this doesn't work with the post_process_write().
        // The reason it doesn't work is because each post_process_write will alternate the source/destination.
        // The only way to have the correct source/destination for the bind_group
        // is to make sure you get it during the node execution.
        let bind_group = render_context.render_device().create_bind_group(
            "post_process_bind_group",
            &post_process_pipeline.layout,
            // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
            &BindGroupEntries::sequential((
                // Make sure to use the source view
                post_process.source,
                // Use the sampler created for the pipeline
                &post_process_pipeline.sampler,
                // Set the settings binding
                settings_binding.clone(),
            )),
        );

        // Begin the render pass
        let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
            label: Some("post_process_pass"),
            color_attachments: &[Some(RenderPassColorAttachment {
                // We need to specify the post process destination view here
                // to make sure we write to the appropriate texture.
                view: post_process.destination,
                resolve_target: None,
                ops: Operations::default(),
            })],
            depth_stencil_attachment: None,
            timestamp_writes: None,
            occlusion_query_set: None,
        });

        // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
        // using the pipeline/bind_group created above
        render_pass.set_render_pipeline(pipeline);
        render_pass.set_bind_group(0, &bind_group, &[]);
        render_pass.draw(0..3, 0..1);

        Ok(())
    }

Methods from Deref<Target = DynamicUniformBuffer<C>>§

pub fn buffer(&self) -> Option<&Buffer>

pub fn binding(&self) -> Option<BindingResource<'_>>

Examples found in repository?
examples/shader/post_processing.rs (line 160)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // Get the pipeline resource that contains the global data we need
        // to create the render pipeline
        let post_process_pipeline = world.resource::<PostProcessPipeline>();

        // The pipeline cache is a cache of all previously created pipelines.
        // It is required to avoid creating a new pipeline each frame,
        // which is expensive due to shader compilation.
        let pipeline_cache = world.resource::<PipelineCache>();

        // Get the pipeline from the cache
        let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
        else {
            return Ok(());
        };

        // Get the settings uniform binding
        let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
        let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
            return Ok(());
        };

        // This will start a new "post process write", obtaining two texture
        // views from the view target - a `source` and a `destination`.
        // `source` is the "current" main texture and you _must_ write into
        // `destination` because calling `post_process_write()` on the
        // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
        // texture to the `destination` texture. Failing to do so will cause
        // the current main texture information to be lost.
        let post_process = view_target.post_process_write();

        // The bind_group gets created each frame.
        //
        // Normally, you would create a bind_group in the Queue set,
        // but this doesn't work with the post_process_write().
        // The reason it doesn't work is because each post_process_write will alternate the source/destination.
        // The only way to have the correct source/destination for the bind_group
        // is to make sure you get it during the node execution.
        let bind_group = render_context.render_device().create_bind_group(
            "post_process_bind_group",
            &post_process_pipeline.layout,
            // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
            &BindGroupEntries::sequential((
                // Make sure to use the source view
                post_process.source,
                // Use the sampler created for the pipeline
                &post_process_pipeline.sampler,
                // Set the settings binding
                settings_binding.clone(),
            )),
        );

        // Begin the render pass
        let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
            label: Some("post_process_pass"),
            color_attachments: &[Some(RenderPassColorAttachment {
                // We need to specify the post process destination view here
                // to make sure we write to the appropriate texture.
                view: post_process.destination,
                resolve_target: None,
                ops: Operations::default(),
            })],
            depth_stencil_attachment: None,
            timestamp_writes: None,
            occlusion_query_set: None,
        });

        // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
        // using the pipeline/bind_group created above
        render_pass.set_render_pipeline(pipeline);
        render_pass.set_bind_group(0, &bind_group, &[]);
        render_pass.draw(0..3, 0..1);

        Ok(())
    }

pub fn is_empty(&self) -> bool

pub fn get_label(&self) -> Option<&str>

Trait Implementations§

§

impl<C> Default for ComponentUniforms<C>
where C: Component + ShaderType,

§

fn default() -> ComponentUniforms<C>

Returns the “default value” for a type. Read more
§

impl<C> Deref for ComponentUniforms<C>
where C: Component + ShaderType,

§

type Target = DynamicUniformBuffer<C>

The resulting type after dereferencing.
§

fn deref(&self) -> &<ComponentUniforms<C> as Deref>::Target

Dereferences the value.
§

impl<C> Resource for ComponentUniforms<C>
where C: Component + ShaderType, ComponentUniforms<C>: Send + Sync + 'static,

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> FromWorld for T
where T: Default,

§

fn from_world(_world: &mut World) -> T

Creates Self using data from the given World.
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> NoneValue for T
where T: Default,

§

type NoneType = T

§

fn null_value() -> T

The none-equivalent value.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<R, P> ReadPrimitive<R> for P
where R: Read + ReadEndian<P>, P: Default,

source§

fn read_from_little_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
source§

fn read_from_big_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
source§

fn read_from_native_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Settings for T
where T: 'static + Send + Sync,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSendSync for T
where T: WasmNotSend + WasmNotSync,

§

impl<T> WasmNotSync for T
where T: Sync,