1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
//! Simple benchmark to test per-entity draw overhead.
//!
//! To measure performance realistically, be sure to run this in release mode.
//! `cargo run --example many_cubes --release`
//!
//! By default, this arranges the meshes in a spherical pattern that
//! distributes the meshes evenly.
//!
//! See `cargo run --example many_cubes --release -- --help` for more options.

use std::{f64::consts::PI, str::FromStr};

use argh::FromArgs;
use bevy::{
    diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
    math::{DVec2, DVec3},
    pbr::NotShadowCaster,
    prelude::*,
    render::{
        batching::NoAutomaticBatching,
        render_asset::RenderAssetUsages,
        render_resource::{Extent3d, TextureDimension, TextureFormat},
        view::{GpuCulling, NoCpuCulling, NoFrustumCulling},
    },
    window::{PresentMode, WindowResolution},
    winit::{UpdateMode, WinitSettings},
};
use rand::{seq::SliceRandom, Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;

#[derive(FromArgs, Resource)]
/// `many_cubes` stress test
struct Args {
    /// how the cube instances should be positioned.
    #[argh(option, default = "Layout::Sphere")]
    layout: Layout,

    /// whether to step the camera animation by a fixed amount such that each frame is the same across runs.
    #[argh(switch)]
    benchmark: bool,

    /// whether to vary the material data in each instance.
    #[argh(switch)]
    vary_material_data_per_instance: bool,

    /// the number of different textures from which to randomly select the material base color. 0 means no textures.
    #[argh(option, default = "0")]
    material_texture_count: usize,

    /// the number of different meshes from which to randomly select. Clamped to at least 1.
    #[argh(option, default = "1")]
    mesh_count: usize,

    /// whether to disable all frustum culling. Stresses queuing and batching as all mesh material entities in the scene are always drawn.
    #[argh(switch)]
    no_frustum_culling: bool,

    /// whether to disable automatic batching. Skips batching resulting in heavy stress on render pass draw command encoding.
    #[argh(switch)]
    no_automatic_batching: bool,

    /// whether to enable GPU culling.
    #[argh(switch)]
    gpu_culling: bool,

    /// whether to disable CPU culling.
    #[argh(switch)]
    no_cpu_culling: bool,

    /// whether to enable directional light cascaded shadow mapping.
    #[argh(switch)]
    shadows: bool,
}

#[derive(Default, Clone)]
enum Layout {
    Cube,
    #[default]
    Sphere,
}

impl FromStr for Layout {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "cube" => Ok(Self::Cube),
            "sphere" => Ok(Self::Sphere),
            _ => Err(format!(
                "Unknown layout value: '{}', valid options: 'cube', 'sphere'",
                s
            )),
        }
    }
}

fn main() {
    // `from_env` panics on the web
    #[cfg(not(target_arch = "wasm32"))]
    let args: Args = argh::from_env();
    #[cfg(target_arch = "wasm32")]
    let args = Args::from_args(&[], &[]).unwrap();

    App::new()
        .add_plugins((
            DefaultPlugins.set(WindowPlugin {
                primary_window: Some(Window {
                    present_mode: PresentMode::AutoNoVsync,
                    resolution: WindowResolution::new(1920.0, 1080.0)
                        .with_scale_factor_override(1.0),
                    ..default()
                }),
                ..default()
            }),
            FrameTimeDiagnosticsPlugin,
            LogDiagnosticsPlugin::default(),
        ))
        .insert_resource(WinitSettings {
            focused_mode: UpdateMode::Continuous,
            unfocused_mode: UpdateMode::Continuous,
        })
        .insert_resource(args)
        .add_systems(Startup, setup)
        .add_systems(Update, (move_camera, print_mesh_count))
        .run();
}

const WIDTH: usize = 200;
const HEIGHT: usize = 200;

fn setup(
    mut commands: Commands,
    args: Res<Args>,
    mesh_assets: ResMut<Assets<Mesh>>,
    material_assets: ResMut<Assets<StandardMaterial>>,
    images: ResMut<Assets<Image>>,
) {
    warn!(include_str!("warning_string.txt"));

    let args = args.into_inner();
    let images = images.into_inner();
    let material_assets = material_assets.into_inner();
    let mesh_assets = mesh_assets.into_inner();

    let meshes = init_meshes(args, mesh_assets);

    let material_textures = init_textures(args, images);
    let materials = init_materials(args, &material_textures, material_assets);

    // We're seeding the PRNG here to make this example deterministic for testing purposes.
    // This isn't strictly required in practical use unless you need your app to be deterministic.
    let mut material_rng = ChaCha8Rng::seed_from_u64(42);
    match args.layout {
        Layout::Sphere => {
            // NOTE: This pattern is good for testing performance of culling as it provides roughly
            // the same number of visible meshes regardless of the viewing angle.
            const N_POINTS: usize = WIDTH * HEIGHT * 4;
            // NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
            let radius = WIDTH as f64 * 2.5;
            let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
            for i in 0..N_POINTS {
                let spherical_polar_theta_phi =
                    fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
                let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
                let (mesh, transform) = meshes.choose(&mut material_rng).unwrap();
                let mut cube = commands.spawn(PbrBundle {
                    mesh: mesh.clone(),
                    material: materials.choose(&mut material_rng).unwrap().clone(),
                    transform: Transform::from_translation((radius * unit_sphere_p).as_vec3())
                        .looking_at(Vec3::ZERO, Vec3::Y)
                        .mul_transform(*transform),
                    ..default()
                });
                if args.no_frustum_culling {
                    cube.insert(NoFrustumCulling);
                }
                if args.no_automatic_batching {
                    cube.insert(NoAutomaticBatching);
                }
            }

            // camera
            let mut camera = commands.spawn(Camera3dBundle::default());
            if args.gpu_culling {
                camera.insert(GpuCulling);
            }
            if args.no_cpu_culling {
                camera.insert(NoCpuCulling);
            }

            // Inside-out box around the meshes onto which shadows are cast (though you cannot see them...)
            commands.spawn((
                PbrBundle {
                    mesh: mesh_assets.add(Cuboid::from_size(Vec3::splat(radius as f32 * 2.2))),
                    material: material_assets.add(StandardMaterial::from(Color::WHITE)),
                    transform: Transform::from_scale(-Vec3::ONE),
                    ..default()
                },
                NotShadowCaster,
            ));
        }
        _ => {
            // NOTE: This pattern is good for demonstrating that frustum culling is working correctly
            // as the number of visible meshes rises and falls depending on the viewing angle.
            let scale = 2.5;
            for x in 0..WIDTH {
                for y in 0..HEIGHT {
                    // introduce spaces to break any kind of moiré pattern
                    if x % 10 == 0 || y % 10 == 0 {
                        continue;
                    }
                    // cube
                    commands.spawn(PbrBundle {
                        mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
                        material: materials.choose(&mut material_rng).unwrap().clone(),
                        transform: Transform::from_xyz((x as f32) * scale, (y as f32) * scale, 0.0),
                        ..default()
                    });
                    commands.spawn(PbrBundle {
                        mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
                        material: materials.choose(&mut material_rng).unwrap().clone(),
                        transform: Transform::from_xyz(
                            (x as f32) * scale,
                            HEIGHT as f32 * scale,
                            (y as f32) * scale,
                        ),
                        ..default()
                    });
                    commands.spawn(PbrBundle {
                        mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
                        material: materials.choose(&mut material_rng).unwrap().clone(),
                        transform: Transform::from_xyz((x as f32) * scale, 0.0, (y as f32) * scale),
                        ..default()
                    });
                    commands.spawn(PbrBundle {
                        mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
                        material: materials.choose(&mut material_rng).unwrap().clone(),
                        transform: Transform::from_xyz(0.0, (x as f32) * scale, (y as f32) * scale),
                        ..default()
                    });
                }
            }
            // camera
            let center = 0.5 * scale * Vec3::new(WIDTH as f32, HEIGHT as f32, WIDTH as f32);
            commands.spawn(Camera3dBundle {
                transform: Transform::from_translation(center),
                ..default()
            });
            // Inside-out box around the meshes onto which shadows are cast (though you cannot see them...)
            commands.spawn((
                PbrBundle {
                    mesh: mesh_assets.add(Cuboid::from_size(2.0 * 1.1 * center)),
                    material: material_assets.add(StandardMaterial::from(Color::WHITE)),
                    transform: Transform::from_scale(-Vec3::ONE).with_translation(center),
                    ..default()
                },
                NotShadowCaster,
            ));
        }
    }

    commands.spawn(DirectionalLightBundle {
        directional_light: DirectionalLight {
            shadows_enabled: args.shadows,
            ..default()
        },
        transform: Transform::IDENTITY.looking_at(Vec3::new(0.0, -1.0, -1.0), Vec3::Y),
        ..default()
    });
}

fn init_textures(args: &Args, images: &mut Assets<Image>) -> Vec<Handle<Image>> {
    // We're seeding the PRNG here to make this example deterministic for testing purposes.
    // This isn't strictly required in practical use unless you need your app to be deterministic.
    let mut color_rng = ChaCha8Rng::seed_from_u64(42);
    let color_bytes: Vec<u8> = (0..(args.material_texture_count * 4))
        .map(|i| if (i % 4) == 3 { 255 } else { color_rng.gen() })
        .collect();
    color_bytes
        .chunks(4)
        .map(|pixel| {
            images.add(Image::new_fill(
                Extent3d {
                    width: 1,
                    height: 1,
                    depth_or_array_layers: 1,
                },
                TextureDimension::D2,
                pixel,
                TextureFormat::Rgba8UnormSrgb,
                RenderAssetUsages::RENDER_WORLD,
            ))
        })
        .collect()
}

fn init_materials(
    args: &Args,
    textures: &[Handle<Image>],
    assets: &mut Assets<StandardMaterial>,
) -> Vec<Handle<StandardMaterial>> {
    let capacity = if args.vary_material_data_per_instance {
        match args.layout {
            Layout::Cube => (WIDTH - WIDTH / 10) * (HEIGHT - HEIGHT / 10),
            Layout::Sphere => WIDTH * HEIGHT * 4,
        }
    } else {
        args.material_texture_count
    }
    .max(1);

    let mut materials = Vec::with_capacity(capacity);
    materials.push(assets.add(StandardMaterial {
        base_color: Color::WHITE,
        base_color_texture: textures.first().cloned(),
        ..default()
    }));

    // We're seeding the PRNG here to make this example deterministic for testing purposes.
    // This isn't strictly required in practical use unless you need your app to be deterministic.
    let mut color_rng = ChaCha8Rng::seed_from_u64(42);
    let mut texture_rng = ChaCha8Rng::seed_from_u64(42);
    materials.extend(
        std::iter::repeat_with(|| {
            assets.add(StandardMaterial {
                base_color: Color::srgb_u8(color_rng.gen(), color_rng.gen(), color_rng.gen()),
                base_color_texture: textures.choose(&mut texture_rng).cloned(),
                ..default()
            })
        })
        .take(capacity - materials.len()),
    );

    materials
}

fn init_meshes(args: &Args, assets: &mut Assets<Mesh>) -> Vec<(Handle<Mesh>, Transform)> {
    let capacity = args.mesh_count.max(1);

    // We're seeding the PRNG here to make this example deterministic for testing purposes.
    // This isn't strictly required in practical use unless you need your app to be deterministic.
    let mut radius_rng = ChaCha8Rng::seed_from_u64(42);
    let mut variant = 0;
    std::iter::repeat_with(|| {
        let radius = radius_rng.gen_range(0.25f32..=0.75f32);
        let (handle, transform) = match variant % 15 {
            0 => (
                assets.add(Cuboid {
                    half_size: Vec3::splat(radius),
                }),
                Transform::IDENTITY,
            ),
            1 => (
                assets.add(Capsule3d {
                    radius,
                    half_length: radius,
                }),
                Transform::IDENTITY,
            ),
            2 => (
                assets.add(Circle { radius }),
                Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
            ),
            3 => {
                let mut vertices = [Vec2::ZERO; 3];
                let dtheta = std::f32::consts::TAU / 3.0;
                for (i, vertex) in vertices.iter_mut().enumerate() {
                    let (s, c) = (i as f32 * dtheta).sin_cos();
                    *vertex = Vec2::new(c, s) * radius;
                }
                (
                    assets.add(Triangle2d { vertices }),
                    Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
                )
            }
            4 => (
                assets.add(Rectangle {
                    half_size: Vec2::splat(radius),
                }),
                Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
            ),
            v if (5..=8).contains(&v) => (
                assets.add(RegularPolygon {
                    circumcircle: Circle { radius },
                    sides: v,
                }),
                Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
            ),
            9 => (
                assets.add(Cylinder {
                    radius,
                    half_height: radius,
                }),
                Transform::IDENTITY,
            ),
            10 => (
                assets.add(Ellipse {
                    half_size: Vec2::new(radius, 0.5 * radius),
                }),
                Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
            ),
            11 => (
                assets.add(
                    Plane3d {
                        normal: Dir3::NEG_Z,
                        half_size: Vec2::splat(0.5),
                    }
                    .mesh()
                    .size(radius, radius),
                ),
                Transform::IDENTITY,
            ),
            12 => (assets.add(Sphere { radius }), Transform::IDENTITY),
            13 => (
                assets.add(Torus {
                    minor_radius: 0.5 * radius,
                    major_radius: radius,
                }),
                Transform::IDENTITY.looking_at(Vec3::Y, Vec3::Y),
            ),
            14 => (
                assets.add(Capsule2d {
                    radius,
                    half_length: radius,
                }),
                Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
            ),
            _ => unreachable!(),
        };
        variant += 1;
        (handle, transform)
    })
    .take(capacity)
    .collect()
}

// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;

fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
    DVec2::new(
        PI * 2. * (i as f64 / golden_ratio),
        (1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
    )
}

fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
    let (sin_theta, cos_theta) = p.x.sin_cos();
    let (sin_phi, cos_phi) = p.y.sin_cos();
    DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
}

// System for rotating the camera
fn move_camera(
    time: Res<Time>,
    args: Res<Args>,
    mut camera_query: Query<&mut Transform, With<Camera>>,
) {
    let mut camera_transform = camera_query.single_mut();
    let delta = 0.15
        * if args.benchmark {
            1.0 / 60.0
        } else {
            time.delta_seconds()
        };
    camera_transform.rotate_z(delta);
    camera_transform.rotate_x(delta);
}

// System for printing the number of meshes on every tick of the timer
fn print_mesh_count(
    time: Res<Time>,
    mut timer: Local<PrintingTimer>,
    sprites: Query<(&Handle<Mesh>, &ViewVisibility)>,
) {
    timer.tick(time.delta());

    if timer.just_finished() {
        info!(
            "Meshes: {} - Visible Meshes {}",
            sprites.iter().len(),
            sprites.iter().filter(|(_, vis)| vis.get()).count(),
        );
    }
}

#[derive(Deref, DerefMut)]
struct PrintingTimer(Timer);

impl Default for PrintingTimer {
    fn default() -> Self {
        Self(Timer::from_seconds(1.0, TimerMode::Repeating))
    }
}