1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
//! This example illustrates how to make headless renderer
//! derived from: <https://sotrh.github.io/learn-wgpu/showcase/windowless/#a-triangle-without-a-window>
//! It follows this steps:
//! 1. Render from camera to gpu-image render target
//! 2. Copy from gpu image to buffer using `ImageCopyDriver` node in `RenderGraph`
//! 3. Copy from buffer to channel using `receive_image_from_buffer` after `RenderSet::Render`
//! 4. Save from channel to random named file using `scene::update` at `PostUpdate` in `MainWorld`
//! 5. Exit if `single_image` setting is set

use bevy::{
    app::{AppExit, ScheduleRunnerPlugin},
    core_pipeline::tonemapping::Tonemapping,
    prelude::*,
    render::{
        camera::RenderTarget,
        render_asset::{RenderAssetUsages, RenderAssets},
        render_graph::{self, NodeRunError, RenderGraph, RenderGraphContext, RenderLabel},
        render_resource::{
            Buffer, BufferDescriptor, BufferUsages, CommandEncoderDescriptor, Extent3d,
            ImageCopyBuffer, ImageDataLayout, Maintain, MapMode, TextureDimension, TextureFormat,
            TextureUsages,
        },
        renderer::{RenderContext, RenderDevice, RenderQueue},
        texture::{BevyDefault, TextureFormatPixelInfo},
        Extract, Render, RenderApp, RenderSet,
    },
};
use crossbeam_channel::{Receiver, Sender};
use std::{
    ops::{Deref, DerefMut},
    path::PathBuf,
    sync::{
        atomic::{AtomicBool, Ordering},
        Arc,
    },
    time::Duration,
};

// To communicate between the main world and the render world we need a channel.
// Since the main world and render world run in parallel, there will always be a frame of latency
// between the data sent from the render world and the data received in the main world
//
// frame n => render world sends data through the channel at the end of the frame
// frame n + 1 => main world receives the data
//
// Receiver and Sender are kept in resources because there is single camera and single target
// That's why there is single images role, if you want to differentiate images
// from different cameras, you should keep Receiver in ImageCopier and Sender in ImageToSave
// or send some id with data

/// This will receive asynchronously any data sent from the render world
#[derive(Resource, Deref)]
struct MainWorldReceiver(Receiver<Vec<u8>>);

/// This will send asynchronously any data to the main world
#[derive(Resource, Deref)]
struct RenderWorldSender(Sender<Vec<u8>>);

// Parameters of resulting image
struct AppConfig {
    width: u32,
    height: u32,
    single_image: bool,
}

fn main() {
    let config = AppConfig {
        width: 1920,
        height: 1080,
        single_image: true,
    };

    // setup frame capture
    App::new()
        .insert_resource(SceneController::new(
            config.width,
            config.height,
            config.single_image,
        ))
        .insert_resource(ClearColor(Color::srgb_u8(0, 0, 0)))
        .add_plugins(
            DefaultPlugins
                .set(ImagePlugin::default_nearest())
                // Do not create a window on startup.
                .set(WindowPlugin {
                    primary_window: None,
                    exit_condition: bevy::window::ExitCondition::DontExit,
                    close_when_requested: false,
                }),
        )
        .add_plugins(ImageCopyPlugin)
        // headless frame capture
        .add_plugins(CaptureFramePlugin)
        .add_plugins(ScheduleRunnerPlugin::run_loop(
            // Run 60 times per second.
            Duration::from_secs_f64(1.0 / 60.0),
        ))
        .init_resource::<SceneController>()
        .add_systems(Startup, setup)
        .run();
}

/// Capture image settings and state
#[derive(Debug, Default, Resource)]
struct SceneController {
    state: SceneState,
    name: String,
    width: u32,
    height: u32,
    single_image: bool,
}

impl SceneController {
    pub fn new(width: u32, height: u32, single_image: bool) -> SceneController {
        SceneController {
            state: SceneState::BuildScene,
            name: String::from(""),
            width,
            height,
            single_image,
        }
    }
}

/// Capture image state
#[derive(Debug, Default)]
enum SceneState {
    #[default]
    // State before any rendering
    BuildScene,
    // Rendering state, stores the number of frames remaining before saving the image
    Render(u32),
}

fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
    mut images: ResMut<Assets<Image>>,
    mut scene_controller: ResMut<SceneController>,
    render_device: Res<RenderDevice>,
) {
    let render_target = setup_render_target(
        &mut commands,
        &mut images,
        &render_device,
        &mut scene_controller,
        // pre_roll_frames should be big enough for full scene render,
        // but the bigger it is, the longer example will run.
        // To visualize stages of scene rendering change this param to 0
        // and change AppConfig::single_image to false in main
        // Stages are:
        // 1. Transparent image
        // 2. Few black box images
        // 3. Fully rendered scene images
        // Exact number depends on device speed, device load and scene size
        40,
        "main_scene".into(),
    );

    // Scene example for non black box picture
    // circular base
    commands.spawn(PbrBundle {
        mesh: meshes.add(Circle::new(4.0)),
        material: materials.add(Color::WHITE),
        transform: Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
        ..default()
    });
    // cube
    commands.spawn(PbrBundle {
        mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
        material: materials.add(Color::srgb_u8(124, 144, 255)),
        transform: Transform::from_xyz(0.0, 0.5, 0.0),
        ..default()
    });
    // light
    commands.spawn(PointLightBundle {
        point_light: PointLight {
            shadows_enabled: true,
            ..default()
        },
        transform: Transform::from_xyz(4.0, 8.0, 4.0),
        ..default()
    });

    commands.spawn(Camera3dBundle {
        transform: Transform::from_xyz(-2.5, 4.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
        tonemapping: Tonemapping::None,
        camera: Camera {
            // render to image
            target: render_target,
            ..default()
        },
        ..default()
    });
}

/// Plugin for Render world part of work
pub struct ImageCopyPlugin;
impl Plugin for ImageCopyPlugin {
    fn build(&self, app: &mut App) {
        let (s, r) = crossbeam_channel::unbounded();

        let render_app = app
            .insert_resource(MainWorldReceiver(r))
            .sub_app_mut(RenderApp);

        let mut graph = render_app.world_mut().resource_mut::<RenderGraph>();
        graph.add_node(ImageCopy, ImageCopyDriver);
        graph.add_node_edge(bevy::render::graph::CameraDriverLabel, ImageCopy);

        render_app
            .insert_resource(RenderWorldSender(s))
            // Make ImageCopiers accessible in RenderWorld system and plugin
            .add_systems(ExtractSchedule, image_copy_extract)
            // Receives image data from buffer to channel
            // so we need to run it after the render graph is done
            .add_systems(Render, receive_image_from_buffer.after(RenderSet::Render));
    }
}

/// Setups render target and cpu image for saving, changes scene state into render mode
fn setup_render_target(
    commands: &mut Commands,
    images: &mut ResMut<Assets<Image>>,
    render_device: &Res<RenderDevice>,
    scene_controller: &mut ResMut<SceneController>,
    pre_roll_frames: u32,
    scene_name: String,
) -> RenderTarget {
    let size = Extent3d {
        width: scene_controller.width,
        height: scene_controller.height,
        ..Default::default()
    };

    // This is the texture that will be rendered to.
    let mut render_target_image = Image::new_fill(
        size,
        TextureDimension::D2,
        &[0; 4],
        TextureFormat::bevy_default(),
        RenderAssetUsages::default(),
    );
    render_target_image.texture_descriptor.usage |=
        TextureUsages::COPY_SRC | TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING;
    let render_target_image_handle = images.add(render_target_image);

    // This is the texture that will be copied to.
    let cpu_image = Image::new_fill(
        size,
        TextureDimension::D2,
        &[0; 4],
        TextureFormat::bevy_default(),
        RenderAssetUsages::default(),
    );
    let cpu_image_handle = images.add(cpu_image);

    commands.spawn(ImageCopier::new(
        render_target_image_handle.clone(),
        size,
        render_device,
    ));

    commands.spawn(ImageToSave(cpu_image_handle));

    scene_controller.state = SceneState::Render(pre_roll_frames);
    scene_controller.name = scene_name;
    RenderTarget::Image(render_target_image_handle)
}

/// Setups image saver
pub struct CaptureFramePlugin;
impl Plugin for CaptureFramePlugin {
    fn build(&self, app: &mut App) {
        info!("Adding CaptureFramePlugin");
        app.add_systems(PostUpdate, update);
    }
}

/// `ImageCopier` aggregator in `RenderWorld`
#[derive(Clone, Default, Resource, Deref, DerefMut)]
struct ImageCopiers(pub Vec<ImageCopier>);

/// Used by `ImageCopyDriver` for copying from render target to buffer
#[derive(Clone, Component)]
struct ImageCopier {
    buffer: Buffer,
    enabled: Arc<AtomicBool>,
    src_image: Handle<Image>,
}

impl ImageCopier {
    pub fn new(
        src_image: Handle<Image>,
        size: Extent3d,
        render_device: &RenderDevice,
    ) -> ImageCopier {
        let padded_bytes_per_row =
            RenderDevice::align_copy_bytes_per_row((size.width) as usize) * 4;

        let cpu_buffer = render_device.create_buffer(&BufferDescriptor {
            label: None,
            size: padded_bytes_per_row as u64 * size.height as u64,
            usage: BufferUsages::MAP_READ | BufferUsages::COPY_DST,
            mapped_at_creation: false,
        });

        ImageCopier {
            buffer: cpu_buffer,
            src_image,
            enabled: Arc::new(AtomicBool::new(true)),
        }
    }

    pub fn enabled(&self) -> bool {
        self.enabled.load(Ordering::Relaxed)
    }
}

/// Extracting `ImageCopier`s into render world, because `ImageCopyDriver` accesses them
fn image_copy_extract(mut commands: Commands, image_copiers: Extract<Query<&ImageCopier>>) {
    commands.insert_resource(ImageCopiers(
        image_copiers.iter().cloned().collect::<Vec<ImageCopier>>(),
    ));
}

/// `RenderGraph` label for `ImageCopyDriver`
#[derive(Debug, PartialEq, Eq, Clone, Hash, RenderLabel)]
struct ImageCopy;

/// `RenderGraph` node
#[derive(Default)]
struct ImageCopyDriver;

// Copies image content from render target to buffer
impl render_graph::Node for ImageCopyDriver {
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        world: &World,
    ) -> Result<(), NodeRunError> {
        let image_copiers = world.get_resource::<ImageCopiers>().unwrap();
        let gpu_images = world
            .get_resource::<RenderAssets<bevy::render::texture::GpuImage>>()
            .unwrap();

        for image_copier in image_copiers.iter() {
            if !image_copier.enabled() {
                continue;
            }

            let src_image = gpu_images.get(&image_copier.src_image).unwrap();

            let mut encoder = render_context
                .render_device()
                .create_command_encoder(&CommandEncoderDescriptor::default());

            let block_dimensions = src_image.texture_format.block_dimensions();
            let block_size = src_image.texture_format.block_copy_size(None).unwrap();

            // Calculating correct size of image row because
            // copy_texture_to_buffer can copy image only by rows aligned wgpu::COPY_BYTES_PER_ROW_ALIGNMENT
            // That's why image in buffer can be little bit wider
            // This should be taken into account at copy from buffer stage
            let padded_bytes_per_row = RenderDevice::align_copy_bytes_per_row(
                (src_image.size.x as usize / block_dimensions.0 as usize) * block_size as usize,
            );

            let texture_extent = Extent3d {
                width: src_image.size.x,
                height: src_image.size.y,
                depth_or_array_layers: 1,
            };

            encoder.copy_texture_to_buffer(
                src_image.texture.as_image_copy(),
                ImageCopyBuffer {
                    buffer: &image_copier.buffer,
                    layout: ImageDataLayout {
                        offset: 0,
                        bytes_per_row: Some(
                            std::num::NonZeroU32::new(padded_bytes_per_row as u32)
                                .unwrap()
                                .into(),
                        ),
                        rows_per_image: None,
                    },
                },
                texture_extent,
            );

            let render_queue = world.get_resource::<RenderQueue>().unwrap();
            render_queue.submit(std::iter::once(encoder.finish()));
        }

        Ok(())
    }
}

/// runs in render world after Render stage to send image from buffer via channel (receiver is in main world)
fn receive_image_from_buffer(
    image_copiers: Res<ImageCopiers>,
    render_device: Res<RenderDevice>,
    sender: Res<RenderWorldSender>,
) {
    for image_copier in image_copiers.0.iter() {
        if !image_copier.enabled() {
            continue;
        }

        // Finally time to get our data back from the gpu.
        // First we get a buffer slice which represents a chunk of the buffer (which we
        // can't access yet).
        // We want the whole thing so use unbounded range.
        let buffer_slice = image_copier.buffer.slice(..);

        // Now things get complicated. WebGPU, for safety reasons, only allows either the GPU
        // or CPU to access a buffer's contents at a time. We need to "map" the buffer which means
        // flipping ownership of the buffer over to the CPU and making access legal. We do this
        // with `BufferSlice::map_async`.
        //
        // The problem is that map_async is not an async function so we can't await it. What
        // we need to do instead is pass in a closure that will be executed when the slice is
        // either mapped or the mapping has failed.
        //
        // The problem with this is that we don't have a reliable way to wait in the main
        // code for the buffer to be mapped and even worse, calling get_mapped_range or
        // get_mapped_range_mut prematurely will cause a panic, not return an error.
        //
        // Using channels solves this as awaiting the receiving of a message from
        // the passed closure will force the outside code to wait. It also doesn't hurt
        // if the closure finishes before the outside code catches up as the message is
        // buffered and receiving will just pick that up.
        //
        // It may also be worth noting that although on native, the usage of asynchronous
        // channels is wholly unnecessary, for the sake of portability to WASM
        // we'll use async channels that work on both native and WASM.

        let (s, r) = crossbeam_channel::bounded(1);

        // Maps the buffer so it can be read on the cpu
        buffer_slice.map_async(MapMode::Read, move |r| match r {
            // This will execute once the gpu is ready, so after the call to poll()
            Ok(r) => s.send(r).expect("Failed to send map update"),
            Err(err) => panic!("Failed to map buffer {err}"),
        });

        // In order for the mapping to be completed, one of three things must happen.
        // One of those can be calling `Device::poll`. This isn't necessary on the web as devices
        // are polled automatically but natively, we need to make sure this happens manually.
        // `Maintain::Wait` will cause the thread to wait on native but not on WebGpu.

        // This blocks until the gpu is done executing everything
        render_device.poll(Maintain::wait()).panic_on_timeout();

        // This blocks until the buffer is mapped
        r.recv().expect("Failed to receive the map_async message");

        // This could fail on app exit, if Main world clears resources (including receiver) while Render world still renders
        let _ = sender.send(buffer_slice.get_mapped_range().to_vec());

        // We need to make sure all `BufferView`'s are dropped before we do what we're about
        // to do.
        // Unmap so that we can copy to the staging buffer in the next iteration.
        image_copier.buffer.unmap();
    }
}

/// CPU-side image for saving
#[derive(Component, Deref, DerefMut)]
struct ImageToSave(Handle<Image>);

// Takes from channel image content sent from render world and saves it to disk
fn update(
    images_to_save: Query<&ImageToSave>,
    receiver: Res<MainWorldReceiver>,
    mut images: ResMut<Assets<Image>>,
    mut scene_controller: ResMut<SceneController>,
    mut app_exit_writer: EventWriter<AppExit>,
    mut file_number: Local<u32>,
) {
    if let SceneState::Render(n) = scene_controller.state {
        if n < 1 {
            // We don't want to block the main world on this,
            // so we use try_recv which attempts to receive without blocking
            let mut image_data = Vec::new();
            while let Ok(data) = receiver.try_recv() {
                // image generation could be faster than saving to fs,
                // that's why use only last of them
                image_data = data;
            }
            if !image_data.is_empty() {
                for image in images_to_save.iter() {
                    // Fill correct data from channel to image
                    let img_bytes = images.get_mut(image.id()).unwrap();

                    // We need to ensure that this works regardless of the image dimensions
                    // If the image became wider when copying from the texture to the buffer,
                    // then the data is reduced to its original size when copying from the buffer to the image.
                    let row_bytes = img_bytes.width() as usize
                        * img_bytes.texture_descriptor.format.pixel_size();
                    let aligned_row_bytes = RenderDevice::align_copy_bytes_per_row(row_bytes);
                    if row_bytes == aligned_row_bytes {
                        img_bytes.data.clone_from(&image_data);
                    } else {
                        // shrink data to original image size
                        img_bytes.data = image_data
                            .chunks(aligned_row_bytes)
                            .take(img_bytes.height() as usize)
                            .flat_map(|row| &row[..row_bytes.min(row.len())])
                            .cloned()
                            .collect();
                    }

                    // Create RGBA Image Buffer
                    let img = match img_bytes.clone().try_into_dynamic() {
                        Ok(img) => img.to_rgba8(),
                        Err(e) => panic!("Failed to create image buffer {e:?}"),
                    };

                    // Prepare directory for images, test_images in bevy folder is used here for example
                    // You should choose the path depending on your needs
                    let images_dir = PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("test_images");
                    info!("Saving image to: {images_dir:?}");
                    std::fs::create_dir_all(&images_dir).unwrap();

                    // Choose filename starting from 000.png
                    let image_path = images_dir.join(format!("{:03}.png", file_number.deref()));
                    *file_number.deref_mut() += 1;

                    // Finally saving image to file, this heavy blocking operation is kept here
                    // for example simplicity, but in real app you should move it to a separate task
                    if let Err(e) = img.save(image_path) {
                        panic!("Failed to save image: {}", e);
                    };
                }
                if scene_controller.single_image {
                    app_exit_writer.send(AppExit::Success);
                }
            }
        } else {
            // clears channel for skipped frames
            while receiver.try_recv().is_ok() {}
            scene_controller.state = SceneState::Render(n - 1);
        }
    }
}