1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! A very simple compute shader that updates a gpu buffer.
//! That buffer is then copied to the cpu and sent to the main world.
//!
//! This example is not meant to teach compute shaders.
//! It is only meant to explain how to read a gpu buffer on the cpu and then use it in the main world.
//!
//! The code is based on this wgpu example:
//! <https://github.com/gfx-rs/wgpu/blob/fb305b85f692f3fbbd9509b648dfbc97072f7465/examples/src/repeated_compute/mod.rs>

use bevy::{
    prelude::*,
    render::{
        render_graph::{self, RenderGraph, RenderLabel},
        render_resource::{binding_types::storage_buffer, *},
        renderer::{RenderContext, RenderDevice},
        Render, RenderApp, RenderSet,
    },
};
use crossbeam_channel::{Receiver, Sender};

// The length of the buffer sent to the gpu
const BUFFER_LEN: usize = 16;

// To communicate between the main world and the render world we need a channel.
// Since the main world and render world run in parallel, there will always be a frame of latency
// between the data sent from the render world and the data received in the main world
//
// frame n => render world sends data through the channel at the end of the frame
// frame n + 1 => main world receives the data

/// This will receive asynchronously any data sent from the render world
#[derive(Resource, Deref)]
struct MainWorldReceiver(Receiver<Vec<u32>>);

/// This will send asynchronously any data to the main world
#[derive(Resource, Deref)]
struct RenderWorldSender(Sender<Vec<u32>>);

fn main() {
    App::new()
        .insert_resource(ClearColor(Color::BLACK))
        .add_plugins((DefaultPlugins, GpuReadbackPlugin))
        .add_systems(Update, receive)
        .run();
}

/// This system will poll the channel and try to get the data sent from the render world
fn receive(receiver: Res<MainWorldReceiver>) {
    // We don't want to block the main world on this,
    // so we use try_recv which attempts to receive without blocking
    if let Ok(data) = receiver.try_recv() {
        println!("Received data from render world: {data:?}");
    }
}

// We need a plugin to organize all the systems and render node required for this example
struct GpuReadbackPlugin;
impl Plugin for GpuReadbackPlugin {
    fn build(&self, _app: &mut App) {}

    // The render device is only accessible inside finish().
    // So we need to initialize render resources here.
    fn finish(&self, app: &mut App) {
        let (s, r) = crossbeam_channel::unbounded();
        app.insert_resource(MainWorldReceiver(r));

        let render_app = app.sub_app_mut(RenderApp);
        render_app
            .insert_resource(RenderWorldSender(s))
            .init_resource::<ComputePipeline>()
            .init_resource::<Buffers>()
            .add_systems(
                Render,
                (
                    prepare_bind_group
                        .in_set(RenderSet::PrepareBindGroups)
                        // We don't need to recreate the bind group every frame
                        .run_if(not(resource_exists::<GpuBufferBindGroup>)),
                    // We need to run it after the render graph is done
                    // because this needs to happen after submit()
                    map_and_read_buffer.after(RenderSet::Render),
                ),
            );

        // Add the compute node as a top level node to the render graph
        // This means it will only execute once per frame
        render_app
            .world_mut()
            .resource_mut::<RenderGraph>()
            .add_node(ComputeNodeLabel, ComputeNode::default());
    }
}

#[derive(Resource)]
struct Buffers {
    // The buffer that will be used by the compute shader
    gpu_buffer: Buffer,
    // The buffer that will be read on the cpu.
    // The `gpu_buffer` will be copied to this buffer every frame
    cpu_buffer: Buffer,
}

impl FromWorld for Buffers {
    fn from_world(world: &mut World) -> Self {
        let render_device = world.resource::<RenderDevice>();
        let mut init_data = encase::StorageBuffer::new(Vec::new());
        // Init the buffer with 0
        let data = vec![0; BUFFER_LEN];
        init_data.write(&data).expect("Failed to write buffer");
        // The buffer that will be accessed by the gpu
        let gpu_buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
            label: Some("gpu_buffer"),
            contents: init_data.as_ref(),
            usage: BufferUsages::STORAGE | BufferUsages::COPY_SRC,
        });
        // For portability reasons, WebGPU draws a distinction between memory that is
        // accessible by the CPU and memory that is accessible by the GPU. Only
        // buffers accessible by the CPU can be mapped and accessed by the CPU and
        // only buffers visible to the GPU can be used in shaders. In order to get
        // data from the GPU, we need to use `CommandEncoder::copy_buffer_to_buffer` to
        // copy the buffer modified by the GPU into a mappable, CPU-accessible buffer
        let cpu_buffer = render_device.create_buffer(&BufferDescriptor {
            label: Some("readback_buffer"),
            size: (BUFFER_LEN * std::mem::size_of::<u32>()) as u64,
            usage: BufferUsages::MAP_READ | BufferUsages::COPY_DST,
            mapped_at_creation: false,
        });

        Self {
            gpu_buffer,
            cpu_buffer,
        }
    }
}

#[derive(Resource)]
struct GpuBufferBindGroup(BindGroup);

fn prepare_bind_group(
    mut commands: Commands,
    pipeline: Res<ComputePipeline>,
    render_device: Res<RenderDevice>,
    buffers: Res<Buffers>,
) {
    let bind_group = render_device.create_bind_group(
        None,
        &pipeline.layout,
        &BindGroupEntries::single(buffers.gpu_buffer.as_entire_binding()),
    );
    commands.insert_resource(GpuBufferBindGroup(bind_group));
}

#[derive(Resource)]
struct ComputePipeline {
    layout: BindGroupLayout,
    pipeline: CachedComputePipelineId,
}

impl FromWorld for ComputePipeline {
    fn from_world(world: &mut World) -> Self {
        let render_device = world.resource::<RenderDevice>();
        let layout = render_device.create_bind_group_layout(
            None,
            &BindGroupLayoutEntries::single(
                ShaderStages::COMPUTE,
                storage_buffer::<Vec<u32>>(false),
            ),
        );
        let shader = world.load_asset("shaders/gpu_readback.wgsl");
        let pipeline_cache = world.resource::<PipelineCache>();
        let pipeline = pipeline_cache.queue_compute_pipeline(ComputePipelineDescriptor {
            label: Some("GPU readback compute shader".into()),
            layout: vec![layout.clone()],
            push_constant_ranges: Vec::new(),
            shader: shader.clone(),
            shader_defs: Vec::new(),
            entry_point: "main".into(),
        });
        ComputePipeline { layout, pipeline }
    }
}

fn map_and_read_buffer(
    render_device: Res<RenderDevice>,
    buffers: Res<Buffers>,
    sender: Res<RenderWorldSender>,
) {
    // Finally time to get our data back from the gpu.
    // First we get a buffer slice which represents a chunk of the buffer (which we
    // can't access yet).
    // We want the whole thing so use unbounded range.
    let buffer_slice = buffers.cpu_buffer.slice(..);

    // Now things get complicated. WebGPU, for safety reasons, only allows either the GPU
    // or CPU to access a buffer's contents at a time. We need to "map" the buffer which means
    // flipping ownership of the buffer over to the CPU and making access legal. We do this
    // with `BufferSlice::map_async`.
    //
    // The problem is that map_async is not an async function so we can't await it. What
    // we need to do instead is pass in a closure that will be executed when the slice is
    // either mapped or the mapping has failed.
    //
    // The problem with this is that we don't have a reliable way to wait in the main
    // code for the buffer to be mapped and even worse, calling get_mapped_range or
    // get_mapped_range_mut prematurely will cause a panic, not return an error.
    //
    // Using channels solves this as awaiting the receiving of a message from
    // the passed closure will force the outside code to wait. It also doesn't hurt
    // if the closure finishes before the outside code catches up as the message is
    // buffered and receiving will just pick that up.
    //
    // It may also be worth noting that although on native, the usage of asynchronous
    // channels is wholly unnecessary, for the sake of portability to WASM
    // we'll use async channels that work on both native and WASM.

    let (s, r) = crossbeam_channel::unbounded::<()>();

    // Maps the buffer so it can be read on the cpu
    buffer_slice.map_async(MapMode::Read, move |r| match r {
        // This will execute once the gpu is ready, so after the call to poll()
        Ok(_) => s.send(()).expect("Failed to send map update"),
        Err(err) => panic!("Failed to map buffer {err}"),
    });

    // In order for the mapping to be completed, one of three things must happen.
    // One of those can be calling `Device::poll`. This isn't necessary on the web as devices
    // are polled automatically but natively, we need to make sure this happens manually.
    // `Maintain::Wait` will cause the thread to wait on native but not on WebGpu.

    // This blocks until the gpu is done executing everything
    render_device.poll(Maintain::wait()).panic_on_timeout();

    // This blocks until the buffer is mapped
    r.recv().expect("Failed to receive the map_async message");

    {
        let buffer_view = buffer_slice.get_mapped_range();
        let data = buffer_view
            .chunks(std::mem::size_of::<u32>())
            .map(|chunk| u32::from_ne_bytes(chunk.try_into().expect("should be a u32")))
            .collect::<Vec<u32>>();
        sender
            .send(data)
            .expect("Failed to send data to main world");
    }

    // We need to make sure all `BufferView`'s are dropped before we do what we're about
    // to do.
    // Unmap so that we can copy to the staging buffer in the next iteration.
    buffers.cpu_buffer.unmap();
}

/// Label to identify the node in the render graph
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
struct ComputeNodeLabel;

/// The node that will execute the compute shader
#[derive(Default)]
struct ComputeNode {}
impl render_graph::Node for ComputeNode {
    fn run(
        &self,
        _graph: &mut render_graph::RenderGraphContext,
        render_context: &mut RenderContext,
        world: &World,
    ) -> Result<(), render_graph::NodeRunError> {
        let pipeline_cache = world.resource::<PipelineCache>();
        let pipeline = world.resource::<ComputePipeline>();
        let bind_group = world.resource::<GpuBufferBindGroup>();

        if let Some(init_pipeline) = pipeline_cache.get_compute_pipeline(pipeline.pipeline) {
            let mut pass =
                render_context
                    .command_encoder()
                    .begin_compute_pass(&ComputePassDescriptor {
                        label: Some("GPU readback compute pass"),
                        ..default()
                    });

            pass.set_bind_group(0, &bind_group.0, &[]);
            pass.set_pipeline(init_pipeline);
            pass.dispatch_workgroups(BUFFER_LEN as u32, 1, 1);
        }

        // Copy the gpu accessible buffer to the cpu accessible buffer
        let buffers = world.resource::<Buffers>();
        render_context.command_encoder().copy_buffer_to_buffer(
            &buffers.gpu_buffer,
            0,
            &buffers.cpu_buffer,
            0,
            (BUFFER_LEN * std::mem::size_of::<u32>()) as u64,
        );

        Ok(())
    }
}