1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
//! This example shows how to align the orientations of objects in 3D space along two axes using the `Transform::align` API.

use bevy::color::palettes::basic::{GRAY, RED, WHITE};
use bevy::input::mouse::{MouseButtonInput, MouseMotion};
use bevy::prelude::*;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;

fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .add_systems(Startup, setup)
        .add_systems(Update, (draw_cube_axes, draw_random_axes))
        .add_systems(Update, (handle_keypress, handle_mouse, rotate_cube).chain())
        .run();
}

/// This struct stores metadata for a single rotational move of the cube
#[derive(Component, Default)]
struct Cube {
    /// The initial transform of the cube move, the starting point of interpolation
    initial_transform: Transform,

    /// The target transform of the cube move, the endpoint of interpolation
    target_transform: Transform,

    /// The progress of the cube move in percentage points
    progress: u16,

    /// Whether the cube is currently in motion; allows motion to be paused
    in_motion: bool,
}

#[derive(Component)]
struct RandomAxes(Dir3, Dir3);

#[derive(Component)]
struct Instructions;

#[derive(Resource)]
struct MousePressed(bool);

#[derive(Resource)]
struct SeededRng(ChaCha8Rng);

// Setup

fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    // We're seeding the PRNG here to make this example deterministic for testing purposes.
    // This isn't strictly required in practical use unless you need your app to be deterministic.
    let mut seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);

    // A camera looking at the origin
    commands.spawn(Camera3dBundle {
        transform: Transform::from_xyz(3., 2.5, 4.).looking_at(Vec3::ZERO, Vec3::Y),
        ..default()
    });

    // A plane that we can sit on top of
    commands.spawn(PbrBundle {
        transform: Transform::from_xyz(0., -2., 0.),
        mesh: meshes.add(Plane3d::default().mesh().size(100.0, 100.0)),
        material: materials.add(Color::srgb(0.3, 0.5, 0.3)),
        ..default()
    });

    // A light source
    commands.spawn(PointLightBundle {
        point_light: PointLight {
            shadows_enabled: true,
            ..default()
        },
        transform: Transform::from_xyz(4.0, 7.0, -4.0),
        ..default()
    });

    // Initialize random axes
    let first = seeded_rng.gen();
    let second = seeded_rng.gen();
    commands.spawn(RandomAxes(first, second));

    // Finally, our cube that is going to rotate
    commands.spawn((
        PbrBundle {
            mesh: meshes.add(Cuboid::new(1.0, 1.0, 1.0)),
            material: materials.add(Color::srgb(0.5, 0.5, 0.5)),
            ..default()
        },
        Cube {
            initial_transform: Transform::IDENTITY,
            target_transform: random_axes_target_alignment(&RandomAxes(first, second)),
            ..default()
        },
    ));

    // Instructions for the example
    commands.spawn((
        TextBundle::from_section(
            "The bright red axis is the primary alignment axis, and it will always be\n\
            made to coincide with the primary target direction (white) exactly.\n\
            The fainter red axis is the secondary alignment axis, and it is made to\n\
            line up with the secondary target direction (gray) as closely as possible.\n\
            Press 'R' to generate random target directions.\n\
            Press 'T' to align the cube to those directions.\n\
            Click and drag the mouse to rotate the camera.\n\
            Press 'H' to hide/show these instructions.",
            TextStyle {
                font_size: 20.,
                ..default()
            },
        )
        .with_style(Style {
            position_type: PositionType::Absolute,
            top: Val::Px(12.0),
            left: Val::Px(12.0),
            ..default()
        }),
        Instructions,
    ));

    commands.insert_resource(MousePressed(false));
    commands.insert_resource(SeededRng(seeded_rng));
}

// Update systems

// Draw the main and secondary axes on the rotating cube
fn draw_cube_axes(mut gizmos: Gizmos, query: Query<&Transform, With<Cube>>) {
    let cube_transform = query.single();

    // Local X-axis arrow
    let x_ends = arrow_ends(cube_transform, Vec3::X, 1.5);
    gizmos.arrow(x_ends.0, x_ends.1, RED);

    // local Y-axis arrow
    let y_ends = arrow_ends(cube_transform, Vec3::Y, 1.5);
    gizmos.arrow(y_ends.0, y_ends.1, Color::srgb(0.65, 0., 0.));
}

// Draw the randomly generated axes
fn draw_random_axes(mut gizmos: Gizmos, query: Query<&RandomAxes>) {
    let RandomAxes(v1, v2) = query.single();
    gizmos.arrow(Vec3::ZERO, 1.5 * *v1, WHITE);
    gizmos.arrow(Vec3::ZERO, 1.5 * *v2, GRAY);
}

// Actually update the cube's transform according to its initial source and target
fn rotate_cube(mut cube: Query<(&mut Cube, &mut Transform)>) {
    let (mut cube, mut cube_transform) = cube.single_mut();

    if !cube.in_motion {
        return;
    }

    let start = cube.initial_transform.rotation;
    let end = cube.target_transform.rotation;

    let p: f32 = cube.progress.into();
    let t = p / 100.;

    *cube_transform = Transform::from_rotation(start.slerp(end, t));

    if cube.progress == 100 {
        cube.in_motion = false;
    } else {
        cube.progress += 1;
    }
}

// Handle user inputs from the keyboard for dynamically altering the scenario
fn handle_keypress(
    mut cube: Query<(&mut Cube, &Transform)>,
    mut random_axes: Query<&mut RandomAxes>,
    mut instructions: Query<&mut Visibility, With<Instructions>>,
    keyboard: Res<ButtonInput<KeyCode>>,
    mut seeded_rng: ResMut<SeededRng>,
) {
    let (mut cube, cube_transform) = cube.single_mut();
    let mut random_axes = random_axes.single_mut();

    if keyboard.just_pressed(KeyCode::KeyR) {
        // Randomize the target axes
        let first = seeded_rng.0.gen();
        let second = seeded_rng.0.gen();
        *random_axes = RandomAxes(first, second);

        // Stop the cube and set it up to transform from its present orientation to the new one
        cube.in_motion = false;
        cube.initial_transform = *cube_transform;
        cube.target_transform = random_axes_target_alignment(&random_axes);
        cube.progress = 0;
    }

    if keyboard.just_pressed(KeyCode::KeyT) {
        cube.in_motion ^= true;
    }

    if keyboard.just_pressed(KeyCode::KeyH) {
        let mut instructions_viz = instructions.single_mut();
        if *instructions_viz == Visibility::Hidden {
            *instructions_viz = Visibility::Visible;
        } else {
            *instructions_viz = Visibility::Hidden;
        }
    }
}

// Handle user mouse input for panning the camera around
fn handle_mouse(
    mut button_events: EventReader<MouseButtonInput>,
    mut motion_events: EventReader<MouseMotion>,
    mut camera: Query<&mut Transform, With<Camera>>,
    mut mouse_pressed: ResMut<MousePressed>,
) {
    // Store left-pressed state in the MousePressed resource
    for button_event in button_events.read() {
        if button_event.button != MouseButton::Left {
            continue;
        }
        *mouse_pressed = MousePressed(button_event.state.is_pressed());
    }

    // If the mouse is not pressed, just ignore motion events
    if !mouse_pressed.0 {
        return;
    }
    let displacement = motion_events
        .read()
        .fold(0., |acc, mouse_motion| acc + mouse_motion.delta.x);
    let mut camera_transform = camera.single_mut();
    camera_transform.rotate_around(Vec3::ZERO, Quat::from_rotation_y(-displacement / 75.));
}

// Helper functions (i.e. non-system functions)

fn arrow_ends(transform: &Transform, axis: Vec3, length: f32) -> (Vec3, Vec3) {
    let local_vector = length * (transform.rotation * axis);
    (transform.translation, transform.translation + local_vector)
}

// This is where `Transform::align` is actually used!
// Note that the choice of `Vec3::X` and `Vec3::Y` here matches the use of those in `draw_cube_axes`.
fn random_axes_target_alignment(random_axes: &RandomAxes) -> Transform {
    let RandomAxes(first, second) = random_axes;
    Transform::IDENTITY.aligned_by(Vec3::X, *first, Vec3::Y, *second)
}