Struct bevy::prelude::ReflectFromReflect

pub struct ReflectFromReflect { /* private fields */ }
Expand description

Type data that represents the FromReflect trait and allows it to be used dynamically.

FromReflect allows dynamic types (e.g. DynamicStruct, DynamicEnum, etc.) to be converted to their full, concrete types. This is most important when it comes to deserialization where it isn’t guaranteed that every field exists when trying to construct the final output.

However, to do this, you normally need to specify the exact concrete type:

#[derive(Reflect, PartialEq, Eq, Debug)]
struct Foo(#[reflect(default = "default_value")] usize);

fn default_value() -> usize { 123 }

let reflected = DynamicTupleStruct::default();

let concrete: Foo = <Foo as FromReflect>::from_reflect(&reflected).unwrap();

assert_eq!(Foo(123), concrete);

In a dynamic context where the type might not be known at compile-time, this is nearly impossible to do. That is why this type data struct exists— it allows us to construct the full type without knowing what the actual type is.

§Example


let mut reflected = DynamicTupleStruct::default();
reflected.set_represented_type(Some(<Foo as Typed>::type_info()));

let registration = registry.get_with_type_path(<Foo as TypePath>::type_path()).unwrap();
let rfr = registration.data::<ReflectFromReflect>().unwrap();

let concrete: Box<dyn Reflect> = rfr.from_reflect(&reflected).unwrap();

assert_eq!(Foo(123), concrete.take::<Foo>().unwrap());

Implementations§

§

impl ReflectFromReflect

pub fn from_reflect( &self, reflect_value: &(dyn Reflect + 'static) ) -> Option<Box<dyn Reflect>>

Perform a FromReflect::from_reflect conversion on the given reflection object.

This will convert the object to a concrete type if it wasn’t already, and return the value as Box<dyn Reflect>.

Examples found in repository?
examples/reflection/dynamic_types.rs (line 129)
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
fn main() {
    #[derive(Reflect, Default)]
    #[reflect(Identifiable, Default)]
    struct Player {
        id: u32,
    }

    #[reflect_trait]
    trait Identifiable {
        fn id(&self) -> u32;
    }

    impl Identifiable for Player {
        fn id(&self) -> u32 {
            self.id
        }
    }

    // Normally, when instantiating a type, you get back exactly that type.
    // This is because the type is known at compile time.
    // We call this the "concrete" or "canonical" type.
    let player: Player = Player { id: 123 };

    // When working with reflected types, however, we often "erase" this type information
    // using the `Reflect` trait object.
    // The underlying type is still the same (in this case, `Player`),
    // but now we've hidden that information from the compiler.
    let reflected: Box<dyn Reflect> = Box::new(player);

    // Because it's the same type under the hood, we can still downcast it back to the original type.
    assert!(reflected.downcast_ref::<Player>().is_some());

    // But now let's "clone" our type using `Reflect::clone_value`.
    let cloned: Box<dyn Reflect> = reflected.clone_value();

    // If we try to downcast back to `Player`, we'll get an error.
    assert!(cloned.downcast_ref::<Player>().is_none());

    // Why is this?
    // Well the reason is that `Reflect::clone_value` actually creates a dynamic type.
    // Since `Player` is a struct, we actually get a `DynamicStruct` back.
    assert!(cloned.is::<DynamicStruct>());

    // This dynamic type is used to represent (or "proxy") the original type,
    // so that we can continue to access its fields and overall structure.
    let ReflectRef::Struct(cloned_ref) = cloned.reflect_ref() else {
        panic!("expected struct")
    };
    let id = cloned_ref.field("id").unwrap().downcast_ref::<u32>();
    assert_eq!(id, Some(&123));

    // It also enables us to create a representation of a type without having compile-time
    // access to the actual type. This is how the reflection deserializers work.
    // They generally can't know how to construct a type ahead of time,
    // so they instead build and return these dynamic representations.
    let input = "(id: 123)";
    let mut registry = TypeRegistry::default();
    registry.register::<Player>();
    let registration = registry.get(std::any::TypeId::of::<Player>()).unwrap();
    let deserialized = TypedReflectDeserializer::new(registration, &registry)
        .deserialize(&mut ron::Deserializer::from_str(input).unwrap())
        .unwrap();

    // Our deserialized output is a `DynamicStruct` that proxies/represents a `Player`.
    assert!(deserialized.downcast_ref::<DynamicStruct>().is_some());
    assert!(deserialized.represents::<Player>());

    // And while this does allow us to access the fields and structure of the type,
    // there may be instances where we need the actual type.
    // For example, if we want to convert our `dyn Reflect` into a `dyn Identifiable`,
    // we can't use the `DynamicStruct` proxy.
    let reflect_identifiable = registration
        .data::<ReflectIdentifiable>()
        .expect("`ReflectIdentifiable` should be registered");

    // This fails since the underlying type of `deserialized` is `DynamicStruct` and not `Player`.
    assert!(reflect_identifiable
        .get(deserialized.as_reflect())
        .is_none());

    // So how can we go from a dynamic type to a concrete type?
    // There are two ways:

    // 1. Using `Reflect::apply`.
    {
        // If you know the type at compile time, you can construct a new value and apply the dynamic
        // value to it.
        let mut value = Player::default();
        value.apply(deserialized.as_reflect());
        assert_eq!(value.id, 123);

        // If you don't know the type at compile time, you need a dynamic way of constructing
        // an instance of the type. One such way is to use the `ReflectDefault` type data.
        let reflect_default = registration
            .data::<ReflectDefault>()
            .expect("`ReflectDefault` should be registered");

        let mut value: Box<dyn Reflect> = reflect_default.default();
        value.apply(deserialized.as_reflect());

        let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
        assert_eq!(identifiable.id(), 123);
    }

    // 2. Using `FromReflect`
    {
        // If you know the type at compile time, you can use the `FromReflect` trait to convert the
        // dynamic value into the concrete type directly.
        let value: Player = Player::from_reflect(deserialized.as_reflect()).unwrap();
        assert_eq!(value.id, 123);

        // If you don't know the type at compile time, you can use the `ReflectFromReflect` type data
        // to perform the conversion dynamically.
        let reflect_from_reflect = registration
            .data::<ReflectFromReflect>()
            .expect("`ReflectFromReflect` should be registered");

        let value: Box<dyn Reflect> = reflect_from_reflect
            .from_reflect(deserialized.as_reflect())
            .unwrap();
        let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
        assert_eq!(identifiable.id(), 123);
    }

    // Lastly, while dynamic types are commonly generated via reflection methods like
    // `Reflect::clone_value` or via the reflection deserializers,
    // you can also construct them manually.
    let mut my_dynamic_list = DynamicList::default();
    my_dynamic_list.push(1u32);
    my_dynamic_list.push(2u32);
    my_dynamic_list.push(3u32);

    // This is useful when you just need to apply some subset of changes to a type.
    let mut my_list: Vec<u32> = Vec::new();
    my_list.apply(&my_dynamic_list);
    assert_eq!(my_list, vec![1, 2, 3]);

    // And if you want it to actually proxy a type, you can configure it to do that as well:
    assert!(!my_dynamic_list.as_reflect().represents::<Vec<u32>>());
    my_dynamic_list.set_represented_type(Some(<Vec<u32>>::type_info()));
    assert!(my_dynamic_list.as_reflect().represents::<Vec<u32>>());

    // ============================= REFERENCE ============================= //
    // For reference, here are all the available dynamic types:

    // 1. `DynamicTuple`
    {
        let mut dynamic_tuple = DynamicTuple::default();
        dynamic_tuple.insert(1u32);
        dynamic_tuple.insert(2u32);
        dynamic_tuple.insert(3u32);

        let mut my_tuple: (u32, u32, u32) = (0, 0, 0);
        my_tuple.apply(&dynamic_tuple);
        assert_eq!(my_tuple, (1, 2, 3));
    }

    // 2. `DynamicArray`
    {
        let dynamic_array = DynamicArray::from_vec(vec![1u32, 2u32, 3u32]);

        let mut my_array = [0u32; 3];
        my_array.apply(&dynamic_array);
        assert_eq!(my_array, [1, 2, 3]);
    }

    // 3. `DynamicList`
    {
        let mut dynamic_list = DynamicList::default();
        dynamic_list.push(1u32);
        dynamic_list.push(2u32);
        dynamic_list.push(3u32);

        let mut my_list: Vec<u32> = Vec::new();
        my_list.apply(&dynamic_list);
        assert_eq!(my_list, vec![1, 2, 3]);
    }

    // 4. `DynamicMap`
    {
        let mut dynamic_map = DynamicMap::default();
        dynamic_map.insert("x", 1u32);
        dynamic_map.insert("y", 2u32);
        dynamic_map.insert("z", 3u32);

        let mut my_map: HashMap<&str, u32> = HashMap::new();
        my_map.apply(&dynamic_map);
        assert_eq!(my_map.get("x"), Some(&1));
        assert_eq!(my_map.get("y"), Some(&2));
        assert_eq!(my_map.get("z"), Some(&3));
    }

    // 5. `DynamicStruct`
    {
        #[derive(Reflect, Default, Debug, PartialEq)]
        struct MyStruct {
            x: u32,
            y: u32,
            z: u32,
        }

        let mut dynamic_struct = DynamicStruct::default();
        dynamic_struct.insert("x", 1u32);
        dynamic_struct.insert("y", 2u32);
        dynamic_struct.insert("z", 3u32);

        let mut my_struct = MyStruct::default();
        my_struct.apply(&dynamic_struct);
        assert_eq!(my_struct, MyStruct { x: 1, y: 2, z: 3 });
    }

    // 6. `DynamicTupleStruct`
    {
        #[derive(Reflect, Default, Debug, PartialEq)]
        struct MyTupleStruct(u32, u32, u32);

        let mut dynamic_tuple_struct = DynamicTupleStruct::default();
        dynamic_tuple_struct.insert(1u32);
        dynamic_tuple_struct.insert(2u32);
        dynamic_tuple_struct.insert(3u32);

        let mut my_tuple_struct = MyTupleStruct::default();
        my_tuple_struct.apply(&dynamic_tuple_struct);
        assert_eq!(my_tuple_struct, MyTupleStruct(1, 2, 3));
    }

    // 7. `DynamicEnum`
    {
        #[derive(Reflect, Default, Debug, PartialEq)]
        enum MyEnum {
            #[default]
            Empty,
            Xyz(u32, u32, u32),
        }

        let mut values = DynamicTuple::default();
        values.insert(1u32);
        values.insert(2u32);
        values.insert(3u32);

        let dynamic_variant = DynamicVariant::Tuple(values);
        let dynamic_enum = DynamicEnum::new("Xyz", dynamic_variant);

        let mut my_enum = MyEnum::default();
        my_enum.apply(&dynamic_enum);
        assert_eq!(my_enum, MyEnum::Xyz(1, 2, 3));
    }
}

Trait Implementations§

§

impl Clone for ReflectFromReflect

§

fn clone(&self) -> ReflectFromReflect

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<T> FromType<T> for ReflectFromReflect
where T: FromReflect,

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> TypeData for T
where T: 'static + Send + Sync + Clone,

§

fn clone_type_data(&self) -> Box<dyn TypeData>

§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Settings for T
where T: 'static + Send + Sync,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSendSync for T
where T: WasmNotSend + WasmNotSync,

§

impl<T> WasmNotSync for T
where T: Sync,