Struct bevy::prelude::CubicBezier

pub struct CubicBezier<P>
where P: VectorSpace,
{ /* private fields */ }
Expand description

A spline composed of a single cubic Bezier curve.

Useful for user-drawn curves with local control, or animation easing. See CubicSegment::new_bezier for use in easing.

§Interpolation

The curve only passes through the first and last control point in each set of four points. The curve is divided into “segments” by every fourth control point.

§Tangency

Tangents are manually defined by the two intermediate control points within each set of four points. You can think of the control points the curve passes through as “anchors”, and as the intermediate control points as the anchors displaced along their tangent vectors

§Continuity

A Bezier curve is at minimum C0 continuous, meaning it has no holes or jumps. Each curve segment is C2, meaning the tangent vector changes smoothly between each set of four control points, but this doesn’t hold at the control points between segments. Making the whole curve C1 or C2 requires moving the intermediate control points to align the tangent vectors between segments, and can result in a loss of local control.

§Usage

let points = [[
    vec2(-1.0, -20.0),
    vec2(3.0, 2.0),
    vec2(5.0, 3.0),
    vec2(9.0, 8.0),
]];
let bezier = CubicBezier::new(points).to_curve();
let positions: Vec<_> = bezier.iter_positions(100).collect();

Implementations§

§

impl<P> CubicBezier<P>
where P: VectorSpace,

pub fn new(control_points: impl Into<Vec<[P; 4]>>) -> CubicBezier<P>

Create a new cubic Bezier curve from sets of control points.

Examples found in repository?
examples/animation/color_animation.rs (line 81)
71
72
73
74
75
76
77
78
79
80
81
82
83
fn spawn_curve_sprite<T: CurveColor>(commands: &mut Commands, y: f32, points: [T; 4]) {
    commands.spawn((
        SpriteBundle {
            transform: Transform::from_xyz(0., y, 0.),
            sprite: Sprite {
                custom_size: Some(Vec2::new(75., 75.)),
                ..Default::default()
            },
            ..Default::default()
        },
        Curve(CubicBezier::new([points]).to_curve()),
    ));
}
More examples
Hide additional examples
examples/animation/cubic_curve.rs (line 37)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    // Define your control points
    // These points will define the curve
    // You can learn more about bezier curves here
    // https://en.wikipedia.org/wiki/B%C3%A9zier_curve
    let points = [[
        vec3(-6., 2., 0.),
        vec3(12., 8., 0.),
        vec3(-12., 8., 0.),
        vec3(6., 2., 0.),
    ]];

    // Make a CubicCurve
    let bezier = CubicBezier::new(points).to_curve();

    // Spawning a cube to experiment on
    commands.spawn((
        PbrBundle {
            mesh: meshes.add(Cuboid::default()),
            material: materials.add(Color::from(ORANGE)),
            transform: Transform::from_translation(points[0][0]),
            ..default()
        },
        Curve(bezier),
    ));

    // Some light to see something
    commands.spawn(PointLightBundle {
        point_light: PointLight {
            shadows_enabled: true,
            intensity: 10_000_000.,
            range: 100.0,
            ..default()
        },
        transform: Transform::from_xyz(8., 16., 8.),
        ..default()
    });

    // ground plane
    commands.spawn(PbrBundle {
        mesh: meshes.add(Plane3d::default().mesh().size(50., 50.)),
        material: materials.add(Color::from(SILVER)),
        ..default()
    });

    // The camera
    commands.spawn(Camera3dBundle {
        transform: Transform::from_xyz(0., 6., 12.).looking_at(Vec3::new(0., 3., 0.), Vec3::Y),
        ..default()
    });
}

Trait Implementations§

§

impl<P> CubicGenerator<P> for CubicBezier<P>
where P: VectorSpace,

§

fn to_curve(&self) -> CubicCurve<P>

Build a CubicCurve by computing the interpolation coefficients for each curve segment.

Auto Trait Implementations§

§

impl<P> Freeze for CubicBezier<P>

§

impl<P> RefUnwindSafe for CubicBezier<P>
where P: RefUnwindSafe,

§

impl<P> Send for CubicBezier<P>
where P: Send,

§

impl<P> Sync for CubicBezier<P>
where P: Sync,

§

impl<P> Unpin for CubicBezier<P>
where P: Unpin,

§

impl<P> UnwindSafe for CubicBezier<P>
where P: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Settings for T
where T: 'static + Send + Sync,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSendSync for T
where T: WasmNotSend + WasmNotSync,

§

impl<T> WasmNotSync for T
where T: Sync,