1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
//! This example shows how to sample random points from primitive shapes.

use std::f32::consts::PI;

use bevy::{
    core_pipeline::{bloom::BloomSettings, tonemapping::Tonemapping},
    input::mouse::{MouseButtonInput, MouseMotion, MouseWheel},
    math::prelude::*,
    prelude::*,
};
use rand::seq::SliceRandom;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;

fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .insert_resource(SampledShapes::new())
        .add_systems(Startup, setup)
        .add_systems(
            Update,
            (
                handle_mouse,
                handle_keypress,
                spawn_points,
                despawn_points,
                animate_spawning,
                animate_despawning,
                update_camera,
                update_lights,
            ),
        )
        .run();
}

// Constants

/// Maximum distance of the camera from its target. (meters)
/// Should be set such that it is possible to look at all objects
const MAX_CAMERA_DISTANCE: f32 = 12.0;

/// Minimum distance of the camera from its target. (meters)
/// Should be set such that it is not possible to clip into objects
const MIN_CAMERA_DISTANCE: f32 = 1.0;

/// Offset to be placed between the shapes
const DISTANCE_BETWEEN_SHAPES: Vec3 = Vec3::new(2.0, 0.0, 0.0);

/// Maximum amount of points allowed to be present.
/// Should be set such that it does not cause large amounts of lag when reached.
const MAX_POINTS: usize = 3000; // TODO: Test wasm and add a wasm-specific-bound

/// How many points should be spawned each frame
const POINTS_PER_FRAME: usize = 3;

/// Color used for the inside points
const INSIDE_POINT_COLOR: LinearRgba = LinearRgba::rgb(0.855, 1.1, 0.01);
/// Color used for the points on the boundary
const BOUNDARY_POINT_COLOR: LinearRgba = LinearRgba::rgb(0.08, 0.2, 0.90);

/// Time (in seconds) for the spawning/despawning animation
const ANIMATION_TIME: f32 = 1.0;

/// Color for the sky and the sky-light
const SKY_COLOR: Color = Color::srgb(0.02, 0.06, 0.15);

const SMALL_3D: f32 = 0.5;
const BIG_3D: f32 = 1.0;

// primitives

const CUBOID: Cuboid = Cuboid {
    half_size: Vec3::new(SMALL_3D, BIG_3D, SMALL_3D),
};

const SPHERE: Sphere = Sphere {
    radius: 1.5 * SMALL_3D,
};

const TRIANGLE_3D: Triangle3d = Triangle3d {
    vertices: [
        Vec3::new(BIG_3D, -BIG_3D * 0.5, 0.0),
        Vec3::new(0.0, BIG_3D, 0.0),
        Vec3::new(-BIG_3D, -BIG_3D * 0.5, 0.0),
    ],
};

const CAPSULE_3D: Capsule3d = Capsule3d {
    radius: SMALL_3D,
    half_length: SMALL_3D,
};

const CYLINDER: Cylinder = Cylinder {
    radius: SMALL_3D,
    half_height: SMALL_3D,
};

const TETRAHEDRON: Tetrahedron = Tetrahedron {
    vertices: [
        Vec3::new(-BIG_3D, -BIG_3D * 0.67, BIG_3D * 0.5),
        Vec3::new(BIG_3D, -BIG_3D * 0.67, BIG_3D * 0.5),
        Vec3::new(0.0, -BIG_3D * 0.67, -BIG_3D * 1.17),
        Vec3::new(0.0, BIG_3D, 0.0),
    ],
};

// Components, Resources

/// Resource for the random sampling mode, telling whether to sample the interior or the boundary.
#[derive(Resource)]
enum SamplingMode {
    Interior,
    Boundary,
}

/// Resource for storing whether points should spawn by themselves
#[derive(Resource)]
enum SpawningMode {
    Manual,
    Automatic,
}

/// Resource for tracking how many points should be spawned
#[derive(Resource)]
struct SpawnQueue(usize);

#[derive(Resource)]
struct PointCounter(usize);

/// Resource storing the shapes being sampled and their translations.
#[derive(Resource)]
struct SampledShapes(Vec<(Shape, Vec3)>);

impl SampledShapes {
    fn new() -> Self {
        let shapes = Shape::list_all_shapes();

        let n_shapes = shapes.len();

        let translations =
            (0..n_shapes).map(|i| (i as f32 - n_shapes as f32 / 2.0) * DISTANCE_BETWEEN_SHAPES);

        SampledShapes(shapes.into_iter().zip(translations).collect())
    }
}

/// Enum listing the shapes that can be sampled
#[derive(Clone, Copy)]
enum Shape {
    Cuboid,
    Sphere,
    Capsule,
    Cylinder,
    Tetrahedron,
    Triangle,
}
struct ShapeMeshBuilder {
    shape: Shape,
}

impl Shape {
    /// Return a vector containing all implemented shapes
    fn list_all_shapes() -> Vec<Shape> {
        vec![
            Shape::Cuboid,
            Shape::Sphere,
            Shape::Capsule,
            Shape::Cylinder,
            Shape::Tetrahedron,
            Shape::Triangle,
        ]
    }
}

impl ShapeSample for Shape {
    type Output = Vec3;
    fn sample_interior<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
        match self {
            Shape::Cuboid => CUBOID.sample_interior(rng),
            Shape::Sphere => SPHERE.sample_interior(rng),
            Shape::Capsule => CAPSULE_3D.sample_interior(rng),
            Shape::Cylinder => CYLINDER.sample_interior(rng),
            Shape::Tetrahedron => TETRAHEDRON.sample_interior(rng),
            Shape::Triangle => TRIANGLE_3D.sample_interior(rng),
        }
    }

    fn sample_boundary<R: rand::prelude::Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
        match self {
            Shape::Cuboid => CUBOID.sample_boundary(rng),
            Shape::Sphere => SPHERE.sample_boundary(rng),
            Shape::Capsule => CAPSULE_3D.sample_boundary(rng),
            Shape::Cylinder => CYLINDER.sample_boundary(rng),
            Shape::Tetrahedron => TETRAHEDRON.sample_boundary(rng),
            Shape::Triangle => TRIANGLE_3D.sample_boundary(rng),
        }
    }
}

impl Meshable for Shape {
    type Output = ShapeMeshBuilder;

    fn mesh(&self) -> Self::Output {
        ShapeMeshBuilder { shape: *self }
    }
}

impl MeshBuilder for ShapeMeshBuilder {
    fn build(&self) -> Mesh {
        match self.shape {
            Shape::Cuboid => CUBOID.mesh().into(),
            Shape::Sphere => SPHERE.mesh().into(),
            Shape::Capsule => CAPSULE_3D.mesh().into(),
            Shape::Cylinder => CYLINDER.mesh().into(),
            Shape::Tetrahedron => TETRAHEDRON.mesh().into(),
            Shape::Triangle => TRIANGLE_3D.mesh().into(),
        }
    }
}

/// The source of randomness used by this example.
#[derive(Resource)]
struct RandomSource(ChaCha8Rng);

/// A container for the handle storing the mesh used to display sampled points as spheres.
#[derive(Resource)]
struct PointMesh(Handle<Mesh>);

/// A container for the handle storing the material used to display sampled points.
#[derive(Resource)]
struct PointMaterial {
    interior: Handle<StandardMaterial>,
    boundary: Handle<StandardMaterial>,
}

/// Marker component for sampled points.
#[derive(Component)]
struct SamplePoint;

/// Component for animating the spawn animation of lights.
#[derive(Component)]
struct SpawningPoint {
    progress: f32,
}

/// Marker component for lights which should change intensity.
#[derive(Component)]
struct DespawningPoint {
    progress: f32,
}

/// Marker component for lights which should change intensity.
#[derive(Component)]
struct FireflyLights;

/// The pressed state of the mouse, used for camera motion.
#[derive(Resource)]
struct MousePressed(bool);

/// Camera movement component.
#[derive(Component)]
struct CameraRig {
    /// Rotation around the vertical axis of the camera (radians).
    /// Positive changes makes the camera look more from the right.
    pub yaw: f32,
    /// Rotation around the horizontal axis of the camera (radians) (-pi/2; pi/2).
    /// Positive looks down from above.
    pub pitch: f32,
    /// Distance from the center, smaller distance causes more zoom.
    pub distance: f32,
    /// Location in 3D space at which the camera is looking and around which it is orbiting.
    pub target: Vec3,
}

fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
    shapes: Res<SampledShapes>,
) {
    // Use seeded rng and store it in a resource; this makes the random output reproducible.
    let seeded_rng = ChaCha8Rng::seed_from_u64(4); // Chosen by a fair die roll, guaranteed to be random.
    commands.insert_resource(RandomSource(seeded_rng));

    // Make a plane for establishing space.
    commands.spawn(PbrBundle {
        mesh: meshes.add(Plane3d::default().mesh().size(20.0, 20.0)),
        material: materials.add(StandardMaterial {
            base_color: Color::srgb(0.3, 0.5, 0.3),
            perceptual_roughness: 0.95,
            metallic: 0.0,
            ..default()
        }),
        transform: Transform::from_xyz(0.0, -2.5, 0.0),
        ..default()
    });

    let shape_material = materials.add(StandardMaterial {
        base_color: Color::srgba(0.2, 0.1, 0.6, 0.3),
        reflectance: 0.0,
        alpha_mode: AlphaMode::Blend,
        cull_mode: None,
        ..default()
    });

    // Spawn shapes to be sampled
    for (shape, translation) in shapes.0.iter() {
        // The sampled shape shown transparently:
        commands.spawn(PbrBundle {
            mesh: meshes.add(shape.mesh()),
            material: shape_material.clone(),
            transform: Transform::from_translation(*translation),
            ..default()
        });

        // Lights which work as the bulk lighting of the fireflies:
        commands.spawn((
            PointLightBundle {
                point_light: PointLight {
                    range: 4.0,
                    radius: 0.6,
                    intensity: 1.0,
                    shadows_enabled: false,
                    color: Color::LinearRgba(INSIDE_POINT_COLOR),
                    ..default()
                },
                transform: Transform::from_translation(*translation),
                ..default()
            },
            FireflyLights,
        ));
    }

    // Global light:
    commands.spawn(PointLightBundle {
        point_light: PointLight {
            color: SKY_COLOR,
            intensity: 2_000.0,
            shadows_enabled: false,
            ..default()
        },
        transform: Transform::from_xyz(4.0, 8.0, 4.0),
        ..default()
    });

    // A camera:
    commands.spawn((
        Camera3dBundle {
            camera: Camera {
                hdr: true, // HDR is required for bloom
                clear_color: ClearColorConfig::Custom(SKY_COLOR),
                ..default()
            },
            tonemapping: Tonemapping::TonyMcMapface,
            transform: Transform::from_xyz(-2.0, 3.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
            ..default()
        },
        BloomSettings::NATURAL,
        CameraRig {
            yaw: 0.56,
            pitch: 0.45,
            distance: 8.0,
            target: Vec3::ZERO,
        },
    ));

    // Store the mesh and material for sample points in resources:
    commands.insert_resource(PointMesh(
        meshes.add(Sphere::new(0.03).mesh().ico(1).unwrap()),
    ));
    commands.insert_resource(PointMaterial {
        interior: materials.add(StandardMaterial {
            base_color: Color::BLACK,
            reflectance: 0.05,
            emissive: 2.5 * INSIDE_POINT_COLOR,
            ..default()
        }),
        boundary: materials.add(StandardMaterial {
            base_color: Color::BLACK,
            reflectance: 0.05,
            emissive: 1.5 * BOUNDARY_POINT_COLOR,
            ..default()
        }),
    });

    // Instructions for the example:
    commands.spawn(
        TextBundle::from_section(
            "Controls:\n\
            M: Toggle between sampling boundary and interior.\n\
            A: Toggle automatic spawning & despawning of points.\n\
            R: Restart (erase all samples).\n\
            S: Add one random sample.\n\
            D: Add 100 random samples.\n\
            Rotate camera by panning via mouse.\n\
            Zoom camera by scrolling via mouse or +/-.\n\
            Move camera by L/R arrow keys.\n\
            Tab: Toggle this text",
            TextStyle::default(),
        )
        .with_style(Style {
            position_type: PositionType::Absolute,
            top: Val::Px(12.0),
            left: Val::Px(12.0),
            ..default()
        }),
    );

    // No points are scheduled to spawn initially.
    commands.insert_resource(SpawnQueue(0));

    // No points have been spawned initially.
    commands.insert_resource(PointCounter(0));

    // The mode starts with interior points.
    commands.insert_resource(SamplingMode::Interior);

    // Points spawn automatically by default.
    commands.insert_resource(SpawningMode::Automatic);

    // Starting mouse-pressed state is false.
    commands.insert_resource(MousePressed(false));
}

// Handle user inputs from the keyboard:
#[allow(clippy::too_many_arguments)]
fn handle_keypress(
    mut commands: Commands,
    keyboard: Res<ButtonInput<KeyCode>>,
    mut mode: ResMut<SamplingMode>,
    mut spawn_mode: ResMut<SpawningMode>,
    samples: Query<Entity, With<SamplePoint>>,
    shapes: Res<SampledShapes>,
    mut spawn_queue: ResMut<SpawnQueue>,
    mut counter: ResMut<PointCounter>,
    mut text_menus: Query<&mut Visibility, With<Text>>,
    mut camera: Query<&mut CameraRig>,
) {
    // R => restart, deleting all samples
    if keyboard.just_pressed(KeyCode::KeyR) {
        // Don't forget to zero out the counter!
        counter.0 = 0;
        for entity in &samples {
            commands.entity(entity).despawn();
        }
    }

    // S => sample once
    if keyboard.just_pressed(KeyCode::KeyS) {
        spawn_queue.0 += 1;
    }

    // D => sample a hundred
    if keyboard.just_pressed(KeyCode::KeyD) {
        spawn_queue.0 += 100;
    }

    // M => toggle mode between interior and boundary.
    if keyboard.just_pressed(KeyCode::KeyM) {
        match *mode {
            SamplingMode::Interior => *mode = SamplingMode::Boundary,
            SamplingMode::Boundary => *mode = SamplingMode::Interior,
        }
    }

    // A => toggle spawning mode between automatic and manual.
    if keyboard.just_pressed(KeyCode::KeyA) {
        match *spawn_mode {
            SpawningMode::Manual => *spawn_mode = SpawningMode::Automatic,
            SpawningMode::Automatic => *spawn_mode = SpawningMode::Manual,
        }
    }

    // Tab => toggle help menu.
    if keyboard.just_pressed(KeyCode::Tab) {
        for mut visibility in text_menus.iter_mut() {
            *visibility = match *visibility {
                Visibility::Hidden => Visibility::Visible,
                _ => Visibility::Hidden,
            };
        }
    }

    let mut camera_rig = camera.single_mut();

    // +/- => zoom camera.
    if keyboard.just_pressed(KeyCode::NumpadSubtract) || keyboard.just_pressed(KeyCode::Minus) {
        camera_rig.distance += MAX_CAMERA_DISTANCE / 15.0;
        camera_rig.distance = camera_rig
            .distance
            .clamp(MIN_CAMERA_DISTANCE, MAX_CAMERA_DISTANCE);
    }

    if keyboard.just_pressed(KeyCode::NumpadAdd) {
        camera_rig.distance -= MAX_CAMERA_DISTANCE / 15.0;
        camera_rig.distance = camera_rig
            .distance
            .clamp(MIN_CAMERA_DISTANCE, MAX_CAMERA_DISTANCE);
    }

    // Arrows => Move camera focus
    let left = keyboard.just_pressed(KeyCode::ArrowLeft);
    let right = keyboard.just_pressed(KeyCode::ArrowRight);

    if left || right {
        let mut closest = 0;
        let mut closest_distance = f32::MAX;
        for (i, (_, position)) in shapes.0.iter().enumerate() {
            let distance = camera_rig.target.distance(*position);
            if distance < closest_distance {
                closest = i;
                closest_distance = distance;
            }
        }
        if closest > 0 && left {
            camera_rig.target = shapes.0[closest - 1].1;
        }
        if closest < shapes.0.len() - 1 && right {
            camera_rig.target = shapes.0[closest + 1].1;
        }
    }
}

// Handle user mouse input for panning the camera around:
fn handle_mouse(
    mut button_events: EventReader<MouseButtonInput>,
    mut motion_events: EventReader<MouseMotion>,
    mut scroll_events: EventReader<MouseWheel>,
    mut camera: Query<&mut CameraRig>,
    mut mouse_pressed: ResMut<MousePressed>,
) {
    // Store left-pressed state in the MousePressed resource
    for button_event in button_events.read() {
        if button_event.button != MouseButton::Left {
            continue;
        }
        *mouse_pressed = MousePressed(button_event.state.is_pressed());
    }

    let mut camera_rig = camera.single_mut();

    let mouse_scroll = scroll_events
        .read()
        .fold(0.0, |acc, scroll_event| acc + scroll_event.y);
    camera_rig.distance -= mouse_scroll / 15.0 * MAX_CAMERA_DISTANCE;
    camera_rig.distance = camera_rig
        .distance
        .clamp(MIN_CAMERA_DISTANCE, MAX_CAMERA_DISTANCE);

    // If the mouse is not pressed, just ignore motion events
    if !mouse_pressed.0 {
        return;
    }
    let displacement = motion_events
        .read()
        .fold(Vec2::ZERO, |acc, mouse_motion| acc + mouse_motion.delta);
    camera_rig.yaw += displacement.x / 90.;
    camera_rig.pitch += displacement.y / 90.;
    // The extra 0.01 is to disallow weird behaviour at the poles of the rotation
    camera_rig.pitch = camera_rig.pitch.clamp(-PI / 2.01, PI / 2.01);
}

#[allow(clippy::too_many_arguments)]
fn spawn_points(
    mut commands: Commands,
    mode: ResMut<SamplingMode>,
    shapes: Res<SampledShapes>,
    mut random_source: ResMut<RandomSource>,
    sample_mesh: Res<PointMesh>,
    sample_material: Res<PointMaterial>,
    mut spawn_queue: ResMut<SpawnQueue>,
    mut counter: ResMut<PointCounter>,
    spawn_mode: ResMut<SpawningMode>,
) {
    if let SpawningMode::Automatic = *spawn_mode {
        spawn_queue.0 += POINTS_PER_FRAME;
    }

    if spawn_queue.0 == 0 {
        return;
    }

    let rng = &mut random_source.0;

    // Don't go crazy
    for _ in 0..1000 {
        if spawn_queue.0 == 0 {
            break;
        }
        spawn_queue.0 -= 1;
        counter.0 += 1;

        let (shape, offset) = shapes.0.choose(rng).expect("There is at least one shape");

        // Get a single random Vec3:
        let sample: Vec3 = *offset
            + match *mode {
                SamplingMode::Interior => shape.sample_interior(rng),
                SamplingMode::Boundary => shape.sample_boundary(rng),
            };

        // Spawn a sphere at the random location:
        commands.spawn((
            PbrBundle {
                mesh: sample_mesh.0.clone(),
                material: match *mode {
                    SamplingMode::Interior => sample_material.interior.clone(),
                    SamplingMode::Boundary => sample_material.boundary.clone(),
                },
                transform: Transform::from_translation(sample).with_scale(Vec3::ZERO),
                ..default()
            },
            SamplePoint,
            SpawningPoint { progress: 0.0 },
        ));
    }
}

fn despawn_points(
    mut commands: Commands,
    samples: Query<Entity, With<SamplePoint>>,
    spawn_mode: Res<SpawningMode>,
    mut counter: ResMut<PointCounter>,
    mut random_source: ResMut<RandomSource>,
) {
    // Do not despawn automatically in manual mode
    if let SpawningMode::Manual = *spawn_mode {
        return;
    }

    if counter.0 < MAX_POINTS {
        return;
    }

    let rng = &mut random_source.0;
    // Skip a random amount of points to ensure random despawning
    let skip = rng.gen_range(0..counter.0);
    let despawn_amount = (counter.0 - MAX_POINTS).min(100);
    counter.0 -= samples
        .iter()
        .skip(skip)
        .take(despawn_amount)
        .map(|entity| {
            commands
                .entity(entity)
                .insert(DespawningPoint { progress: 0.0 })
                .remove::<SpawningPoint>()
                .remove::<SamplePoint>();
        })
        .count();
}

fn animate_spawning(
    mut commands: Commands,
    time: Res<Time>,
    mut samples: Query<(Entity, &mut Transform, &mut SpawningPoint)>,
) {
    let dt = time.delta_seconds();

    for (entity, mut transform, mut point) in samples.iter_mut() {
        point.progress += dt / ANIMATION_TIME;
        transform.scale = Vec3::splat(point.progress.min(1.0));
        if point.progress >= 1.0 {
            commands.entity(entity).remove::<SpawningPoint>();
        }
    }
}

fn animate_despawning(
    mut commands: Commands,
    time: Res<Time>,
    mut samples: Query<(Entity, &mut Transform, &mut DespawningPoint)>,
) {
    let dt = time.delta_seconds();

    for (entity, mut transform, mut point) in samples.iter_mut() {
        point.progress += dt / ANIMATION_TIME;
        // If the point is already smaller than expected, jump ahead with the despawning progress to avoid sudden jumps in size
        point.progress = f32::max(point.progress, 1.0 - transform.scale.x);
        transform.scale = Vec3::splat((1.0 - point.progress).max(0.0));
        if point.progress >= 1.0 {
            commands.entity(entity).despawn();
        }
    }
}

fn update_camera(mut camera: Query<(&mut Transform, &CameraRig), Changed<CameraRig>>) {
    for (mut transform, rig) in camera.iter_mut() {
        let looking_direction =
            Quat::from_rotation_y(-rig.yaw) * Quat::from_rotation_x(rig.pitch) * Vec3::Z;
        transform.translation = rig.target - rig.distance * looking_direction;
        transform.look_at(rig.target, Dir3::Y);
    }
}

fn update_lights(
    mut lights: Query<&mut PointLight, With<FireflyLights>>,
    counter: Res<PointCounter>,
) {
    let saturation = (counter.0 as f32 / MAX_POINTS as f32).min(2.0);
    let intensity = 40_000.0 * saturation;
    for mut light in lights.iter_mut() {
        light.intensity = light.intensity.lerp(intensity, 0.04);
    }
}