1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//! This example demonstrates how to create a custom mesh,
//! assign a custom UV mapping for a custom texture,
//! and how to change the UV mapping at run-time.

use bevy::prelude::*;
use bevy::render::{
    mesh::{Indices, VertexAttributeValues},
    render_asset::RenderAssetUsages,
    render_resource::PrimitiveTopology,
};

// Define a "marker" component to mark the custom mesh. Marker components are often used in Bevy for
// filtering entities in queries with With, they're usually not queried directly since they don't contain information within them.
#[derive(Component)]
struct CustomUV;

fn main() {
    App::new()
        .add_plugins(DefaultPlugins)
        .add_systems(Startup, setup)
        .add_systems(Update, input_handler)
        .run();
}

fn setup(
    mut commands: Commands,
    asset_server: Res<AssetServer>,
    mut materials: ResMut<Assets<StandardMaterial>>,
    mut meshes: ResMut<Assets<Mesh>>,
) {
    // Import the custom texture.
    let custom_texture_handle: Handle<Image> = asset_server.load("textures/array_texture.png");
    // Create and save a handle to the mesh.
    let cube_mesh_handle: Handle<Mesh> = meshes.add(create_cube_mesh());

    // Render the mesh with the custom texture using a PbrBundle, add the marker.
    commands.spawn((
        PbrBundle {
            mesh: cube_mesh_handle,
            material: materials.add(StandardMaterial {
                base_color_texture: Some(custom_texture_handle),
                ..default()
            }),
            ..default()
        },
        CustomUV,
    ));

    // Transform for the camera and lighting, looking at (0,0,0) (the position of the mesh).
    let camera_and_light_transform =
        Transform::from_xyz(1.8, 1.8, 1.8).looking_at(Vec3::ZERO, Vec3::Y);

    // Camera in 3D space.
    commands.spawn(Camera3dBundle {
        transform: camera_and_light_transform,
        ..default()
    });

    // Light up the scene.
    commands.spawn(PointLightBundle {
        transform: camera_and_light_transform,
        ..default()
    });

    // Text to describe the controls.
    commands.spawn(
        TextBundle::from_section(
            "Controls:\nSpace: Change UVs\nX/Y/Z: Rotate\nR: Reset orientation",
            TextStyle::default(),
        )
        .with_style(Style {
            position_type: PositionType::Absolute,
            top: Val::Px(12.0),
            left: Val::Px(12.0),
            ..default()
        }),
    );
}

// System to receive input from the user,
// check out examples/input/ for more examples about user input.
fn input_handler(
    keyboard_input: Res<ButtonInput<KeyCode>>,
    mesh_query: Query<&Handle<Mesh>, With<CustomUV>>,
    mut meshes: ResMut<Assets<Mesh>>,
    mut query: Query<&mut Transform, With<CustomUV>>,
    time: Res<Time>,
) {
    if keyboard_input.just_pressed(KeyCode::Space) {
        let mesh_handle = mesh_query.get_single().expect("Query not successful");
        let mesh = meshes.get_mut(mesh_handle).unwrap();
        toggle_texture(mesh);
    }
    if keyboard_input.pressed(KeyCode::KeyX) {
        for mut transform in &mut query {
            transform.rotate_x(time.delta_seconds() / 1.2);
        }
    }
    if keyboard_input.pressed(KeyCode::KeyY) {
        for mut transform in &mut query {
            transform.rotate_y(time.delta_seconds() / 1.2);
        }
    }
    if keyboard_input.pressed(KeyCode::KeyZ) {
        for mut transform in &mut query {
            transform.rotate_z(time.delta_seconds() / 1.2);
        }
    }
    if keyboard_input.pressed(KeyCode::KeyR) {
        for mut transform in &mut query {
            transform.look_to(Vec3::NEG_Z, Vec3::Y);
        }
    }
}

#[rustfmt::skip]
fn create_cube_mesh() -> Mesh {
    // Keep the mesh data accessible in future frames to be able to mutate it in toggle_texture.
    Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD)
    .with_inserted_attribute(
        Mesh::ATTRIBUTE_POSITION,
        // Each array is an [x, y, z] coordinate in local space.
        // The camera coordinate space is right-handed x-right, y-up, z-back. This means "forward" is -Z.
        // Meshes always rotate around their local [0, 0, 0] when a rotation is applied to their Transform.
        // By centering our mesh around the origin, rotating the mesh preserves its center of mass.
        vec![
            // top (facing towards +y)
            [-0.5, 0.5, -0.5], // vertex with index 0
            [0.5, 0.5, -0.5], // vertex with index 1
            [0.5, 0.5, 0.5], // etc. until 23
            [-0.5, 0.5, 0.5],
            // bottom   (-y)
            [-0.5, -0.5, -0.5],
            [0.5, -0.5, -0.5],
            [0.5, -0.5, 0.5],
            [-0.5, -0.5, 0.5],
            // right    (+x)
            [0.5, -0.5, -0.5],
            [0.5, -0.5, 0.5],
            [0.5, 0.5, 0.5], // This vertex is at the same position as vertex with index 2, but they'll have different UV and normal
            [0.5, 0.5, -0.5],
            // left     (-x)
            [-0.5, -0.5, -0.5],
            [-0.5, -0.5, 0.5],
            [-0.5, 0.5, 0.5],
            [-0.5, 0.5, -0.5],
            // back     (+z)
            [-0.5, -0.5, 0.5],
            [-0.5, 0.5, 0.5],
            [0.5, 0.5, 0.5],
            [0.5, -0.5, 0.5],
            // forward  (-z)
            [-0.5, -0.5, -0.5],
            [-0.5, 0.5, -0.5],
            [0.5, 0.5, -0.5],
            [0.5, -0.5, -0.5],
        ],
    )
    // Set-up UV coordinates to point to the upper (V < 0.5), "dirt+grass" part of the texture.
    // Take a look at the custom image (assets/textures/array_texture.png)
    // so the UV coords will make more sense
    // Note: (0.0, 0.0) = Top-Left in UV mapping, (1.0, 1.0) = Bottom-Right in UV mapping
    .with_inserted_attribute(
        Mesh::ATTRIBUTE_UV_0,
        vec![
            // Assigning the UV coords for the top side.
            [0.0, 0.2], [0.0, 0.0], [1.0, 0.0], [1.0, 0.2],
            // Assigning the UV coords for the bottom side.
            [0.0, 0.45], [0.0, 0.25], [1.0, 0.25], [1.0, 0.45],
            // Assigning the UV coords for the right side.
            [1.0, 0.45], [0.0, 0.45], [0.0, 0.2], [1.0, 0.2],
            // Assigning the UV coords for the left side.
            [1.0, 0.45], [0.0, 0.45], [0.0, 0.2], [1.0, 0.2],
            // Assigning the UV coords for the back side.
            [0.0, 0.45], [0.0, 0.2], [1.0, 0.2], [1.0, 0.45],
            // Assigning the UV coords for the forward side.
            [0.0, 0.45], [0.0, 0.2], [1.0, 0.2], [1.0, 0.45],
        ],
    )
    // For meshes with flat shading, normals are orthogonal (pointing out) from the direction of
    // the surface.
    // Normals are required for correct lighting calculations.
    // Each array represents a normalized vector, which length should be equal to 1.0.
    .with_inserted_attribute(
        Mesh::ATTRIBUTE_NORMAL,
        vec![
            // Normals for the top side (towards +y)
            [0.0, 1.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, 1.0, 0.0],
            // Normals for the bottom side (towards -y)
            [0.0, -1.0, 0.0],
            [0.0, -1.0, 0.0],
            [0.0, -1.0, 0.0],
            [0.0, -1.0, 0.0],
            // Normals for the right side (towards +x)
            [1.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            // Normals for the left side (towards -x)
            [-1.0, 0.0, 0.0],
            [-1.0, 0.0, 0.0],
            [-1.0, 0.0, 0.0],
            [-1.0, 0.0, 0.0],
            // Normals for the back side (towards +z)
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            // Normals for the forward side (towards -z)
            [0.0, 0.0, -1.0],
            [0.0, 0.0, -1.0],
            [0.0, 0.0, -1.0],
            [0.0, 0.0, -1.0],
        ],
    )
    // Create the triangles out of the 24 vertices we created.
    // To construct a square, we need 2 triangles, therefore 12 triangles in total.
    // To construct a triangle, we need the indices of its 3 defined vertices, adding them one
    // by one, in a counter-clockwise order (relative to the position of the viewer, the order
    // should appear counter-clockwise from the front of the triangle, in this case from outside the cube).
    // Read more about how to correctly build a mesh manually in the Bevy documentation of a Mesh,
    // further examples and the implementation of the built-in shapes.
    .with_inserted_indices(Indices::U32(vec![
        0,3,1 , 1,3,2, // triangles making up the top (+y) facing side.
        4,5,7 , 5,6,7, // bottom (-y)
        8,11,9 , 9,11,10, // right (+x)
        12,13,15 , 13,14,15, // left (-x)
        16,19,17 , 17,19,18, // back (+z)
        20,21,23 , 21,22,23, // forward (-z)
    ]))
}

// Function that changes the UV mapping of the mesh, to apply the other texture.
fn toggle_texture(mesh_to_change: &mut Mesh) {
    // Get a mutable reference to the values of the UV attribute, so we can iterate over it.
    let uv_attribute = mesh_to_change.attribute_mut(Mesh::ATTRIBUTE_UV_0).unwrap();
    // The format of the UV coordinates should be Float32x2.
    let VertexAttributeValues::Float32x2(uv_attribute) = uv_attribute else {
        panic!("Unexpected vertex format, expected Float32x2.");
    };

    // Iterate over the UV coordinates, and change them as we want.
    for uv_coord in uv_attribute.iter_mut() {
        // If the UV coordinate points to the upper, "dirt+grass" part of the texture...
        if (uv_coord[1] + 0.5) < 1.0 {
            // ... point to the equivalent lower, "sand+water" part instead,
            uv_coord[1] += 0.5;
        } else {
            // else, point back to the upper, "dirt+grass" part.
            uv_coord[1] -= 0.5;
        }
    }
}