`pub type DiGraph<N, E, Ix = u32> = Graph<N, E, Directed, Ix>;`

## Expand description

A `Graph`

with directed edges.

For example, an edge from *1* to *2* is distinct from an edge from *2* to
*1*.

## Aliased Type§

`struct DiGraph<N, E, Ix = u32> { /* private fields */ }`

## Implementations§

source§### impl<N, E, Ty, Ix> Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

source#### pub fn with_capacity(nodes: usize, edges: usize) -> Graph<N, E, Ty, Ix>

#### pub fn with_capacity(nodes: usize, edges: usize) -> Graph<N, E, Ty, Ix>

Create a new `Graph`

with estimated capacity.

source#### pub fn node_count(&self) -> usize

#### pub fn node_count(&self) -> usize

Return the number of nodes (vertices) in the graph.

Computes in **O(1)** time.

source#### pub fn edge_count(&self) -> usize

#### pub fn edge_count(&self) -> usize

Return the number of edges in the graph.

Computes in **O(1)** time.

source#### pub fn is_directed(&self) -> bool

#### pub fn is_directed(&self) -> bool

Whether the graph has directed edges or not.

source#### pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>

#### pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix>

Add a node (also called vertex) with associated data `weight`

to the graph.

Computes in **O(1)** time.

Return the index of the new node.

**Panics** if the Graph is at the maximum number of nodes for its index
type (N/A if usize).

source#### pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N>

#### pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N>

Access the weight for node `a`

.

If node `a`

doesn’t exist in the graph, return `None`

.
Also available with indexing syntax: `&graph[a]`

.

source#### pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N>

#### pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N>

Access the weight for node `a`

, mutably.

If node `a`

doesn’t exist in the graph, return `None`

.
Also available with indexing syntax: `&mut graph[a]`

.

source#### pub fn add_edge(
&mut self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>,
weight: E
) -> EdgeIndex<Ix>

#### pub fn add_edge( &mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E ) -> EdgeIndex<Ix>

Add an edge from `a`

to `b`

to the graph, with its associated
data `weight`

.

Return the index of the new edge.

Computes in **O(1)** time.

**Panics** if any of the nodes don’t exist.

**Panics** if the Graph is at the maximum number of edges for its index
type (N/A if usize).

**Note:** `Graph`

allows adding parallel (“duplicate”) edges. If you want
to avoid this, use `.update_edge(a, b, weight)`

instead.

source#### pub fn update_edge(
&mut self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>,
weight: E
) -> EdgeIndex<Ix>

#### pub fn update_edge( &mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E ) -> EdgeIndex<Ix>

Add or update an edge from `a`

to `b`

.
If the edge already exists, its weight is updated.

Return the index of the affected edge.

Computes in **O(e’)** time, where **e’** is the number of edges
connected to `a`

(and `b`

, if the graph edges are undirected).

**Panics** if any of the nodes doesn’t exist.

source#### pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E>

#### pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E>

Access the weight for edge `e`

.

If edge `e`

doesn’t exist in the graph, return `None`

.
Also available with indexing syntax: `&graph[e]`

.

source#### pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E>

#### pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E>

Access the weight for edge `e`

, mutably.

If edge `e`

doesn’t exist in the graph, return `None`

.
Also available with indexing syntax: `&mut graph[e]`

.

source#### pub fn edge_endpoints(
&self,
e: EdgeIndex<Ix>
) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)>

#### pub fn edge_endpoints( &self, e: EdgeIndex<Ix> ) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)>

Access the source and target nodes for `e`

.

If edge `e`

doesn’t exist in the graph, return `None`

.

source#### pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N>

#### pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N>

Remove `a`

from the graph if it exists, and return its weight.
If it doesn’t exist in the graph, return `None`

.

Apart from `a`

, this invalidates the last node index in the graph
(that node will adopt the removed node index). Edge indices are
invalidated as they would be following the removal of each edge
with an endpoint in `a`

.

Computes in **O(e’)** time, where **e’** is the number of affected
edges, including *n* calls to `.remove_edge()`

where *n* is the number
of edges with an endpoint in `a`

, and including the edges with an
endpoint in the displaced node.

source#### pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E>

#### pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E>

Remove an edge and return its edge weight, or `None`

if it didn’t exist.

Apart from `e`

, this invalidates the last edge index in the graph
(that edge will adopt the removed edge index).

Computes in **O(e’)** time, where **e’** is the size of four particular edge lists, for
the vertices of `e`

and the vertices of another affected edge.

source#### pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<'_, E, Ix> ⓘ

#### pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<'_, E, Ix> ⓘ

Return an iterator of all nodes with an edge starting from `a`

.

`Directed`

: Outgoing edges from`a`

.`Undirected`

: All edges from or to`a`

.

Produces an empty iterator if the node doesn’t exist.

Iterator element type is `NodeIndex<Ix>`

.

Use `.neighbors(a).detach()`

to get a neighbor walker that does
not borrow from the graph.

source#### pub fn neighbors_directed(
&self,
a: NodeIndex<Ix>,
dir: Direction
) -> Neighbors<'_, E, Ix> ⓘ

#### pub fn neighbors_directed( &self, a: NodeIndex<Ix>, dir: Direction ) -> Neighbors<'_, E, Ix> ⓘ

Return an iterator of all neighbors that have an edge between them and
`a`

, in the specified direction.
If the graph’s edges are undirected, this is equivalent to *.neighbors(a)*.

`Directed`

,`Outgoing`

: All edges from`a`

.`Directed`

,`Incoming`

: All edges to`a`

.`Undirected`

: All edges from or to`a`

.

Produces an empty iterator if the node doesn’t exist.

Iterator element type is `NodeIndex<Ix>`

.

For a `Directed`

graph, neighbors are listed in reverse order of their
addition to the graph, so the most recently added edge’s neighbor is
listed first. The order in an `Undirected`

graph is arbitrary.

Use `.neighbors_directed(a, dir).detach()`

to get a neighbor walker that does
not borrow from the graph.

source#### pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<'_, E, Ix> ⓘ

#### pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<'_, E, Ix> ⓘ

Return an iterator of all neighbors that have an edge between them and
`a`

, in either direction.
If the graph’s edges are undirected, this is equivalent to *.neighbors(a)*.

`Directed`

and`Undirected`

: All edges from or to`a`

.

Produces an empty iterator if the node doesn’t exist.

Iterator element type is `NodeIndex<Ix>`

.

Use `.neighbors_undirected(a).detach()`

to get a neighbor walker that does
not borrow from the graph.

source#### pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<'_, E, Ty, Ix> ⓘ

#### pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<'_, E, Ty, Ix> ⓘ

Return an iterator of all edges of `a`

.

`Directed`

: Outgoing edges from`a`

.`Undirected`

: All edges connected to`a`

.

Produces an empty iterator if the node doesn’t exist.

Iterator element type is `EdgeReference<E, Ix>`

.

source#### pub fn edges_directed(
&self,
a: NodeIndex<Ix>,
dir: Direction
) -> Edges<'_, E, Ty, Ix> ⓘ

#### pub fn edges_directed( &self, a: NodeIndex<Ix>, dir: Direction ) -> Edges<'_, E, Ty, Ix> ⓘ

Return an iterator of all edges of `a`

, in the specified direction.

`Directed`

,`Outgoing`

: All edges from`a`

.`Directed`

,`Incoming`

: All edges to`a`

.`Undirected`

,`Outgoing`

: All edges connected to`a`

, with`a`

being the source of each edge.`Undirected`

,`Incoming`

: All edges connected to`a`

, with`a`

being the target of each edge.

Produces an empty iterator if the node `a`

doesn’t exist.

Iterator element type is `EdgeReference<E, Ix>`

.

source#### pub fn edges_connecting(
&self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>
) -> EdgesConnecting<'_, E, Ty, Ix> ⓘ

#### pub fn edges_connecting( &self, a: NodeIndex<Ix>, b: NodeIndex<Ix> ) -> EdgesConnecting<'_, E, Ty, Ix> ⓘ

Return an iterator over all the edges connecting `a`

and `b`

.

`Directed`

: Outgoing edges from`a`

.`Undirected`

: All edges connected to`a`

.

Iterator element type is `EdgeReference<E, Ix>`

.

source#### pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool

#### pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool

Lookup if there is an edge from `a`

to `b`

.

Computes in **O(e’)** time, where **e’** is the number of edges
connected to `a`

(and `b`

, if the graph edges are undirected).

source#### pub fn find_edge(
&self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>
) -> Option<EdgeIndex<Ix>>

#### pub fn find_edge( &self, a: NodeIndex<Ix>, b: NodeIndex<Ix> ) -> Option<EdgeIndex<Ix>>

Lookup an edge from `a`

to `b`

.

Computes in **O(e’)** time, where **e’** is the number of edges
connected to `a`

(and `b`

, if the graph edges are undirected).

source#### pub fn find_edge_undirected(
&self,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>
) -> Option<(EdgeIndex<Ix>, Direction)>

#### pub fn find_edge_undirected( &self, a: NodeIndex<Ix>, b: NodeIndex<Ix> ) -> Option<(EdgeIndex<Ix>, Direction)>

Lookup an edge between `a`

and `b`

, in either direction.

If the graph is undirected, then this is equivalent to `.find_edge()`

.

Return the edge index and its directionality, with `Outgoing`

meaning
from `a`

to `b`

and `Incoming`

the reverse,
or `None`

if the edge does not exist.

source#### pub fn externals(&self, dir: Direction) -> Externals<'_, N, Ty, Ix> ⓘ

#### pub fn externals(&self, dir: Direction) -> Externals<'_, N, Ty, Ix> ⓘ

Return an iterator over either the nodes without edges to them
(`Incoming`

) or from them (`Outgoing`

).

An *internal* node has both incoming and outgoing edges.
The nodes in `.externals(Incoming)`

are the source nodes and
`.externals(Outgoing)`

are the sinks of the graph.

For a graph with undirected edges, both the sinks and the sources are just the nodes without edges.

The whole iteration computes in **O(|V|)** time.

source#### pub fn node_indices(&self) -> NodeIndices<Ix> ⓘ

#### pub fn node_indices(&self) -> NodeIndices<Ix> ⓘ

Return an iterator over the node indices of the graph.

For example, in a rare case where a graph algorithm were not applicable, the following code will iterate through all nodes to find a specific index:

`let index = g.node_indices().find(|i| g[*i] == "book").unwrap();`

source#### pub fn node_weights_mut(&mut self) -> NodeWeightsMut<'_, N, Ix> ⓘ

#### pub fn node_weights_mut(&mut self) -> NodeWeightsMut<'_, N, Ix> ⓘ

Return an iterator yielding mutable access to all node weights.

The order in which weights are yielded matches the order of their node indices.

source#### pub fn node_weights(&self) -> NodeWeights<'_, N, Ix>

#### pub fn node_weights(&self) -> NodeWeights<'_, N, Ix>

Return an iterator yielding immutable access to all node weights.

The order in which weights are yielded matches the order of their node indices.

source#### pub fn edge_indices(&self) -> EdgeIndices<Ix> ⓘ

#### pub fn edge_indices(&self) -> EdgeIndices<Ix> ⓘ

Return an iterator over the edge indices of the graph

source#### pub fn edge_references(&self) -> EdgeReferences<'_, E, Ix> ⓘ

#### pub fn edge_references(&self) -> EdgeReferences<'_, E, Ix> ⓘ

Create an iterator over all edges, in indexed order.

Iterator element type is `EdgeReference<E, Ix>`

.

source#### pub fn edge_weights(&self) -> EdgeWeights<'_, E, Ix>

#### pub fn edge_weights(&self) -> EdgeWeights<'_, E, Ix>

Return an iterator yielding immutable access to all edge weights.

The order in which weights are yielded matches the order of their edge indices.

source#### pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<'_, E, Ix> ⓘ

#### pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<'_, E, Ix> ⓘ

Return an iterator yielding mutable access to all edge weights.

The order in which weights are yielded matches the order of their edge indices.

source#### pub fn into_nodes_edges(
self
) -> (Vec<Node<N, Ix>, Global>, Vec<Edge<E, Ix>, Global>)

#### pub fn into_nodes_edges( self ) -> (Vec<Node<N, Ix>, Global>, Vec<Edge<E, Ix>, Global>)

Convert the graph into a vector of Nodes and a vector of Edges

source#### pub fn first_edge(
&self,
a: NodeIndex<Ix>,
dir: Direction
) -> Option<EdgeIndex<Ix>>

#### pub fn first_edge( &self, a: NodeIndex<Ix>, dir: Direction ) -> Option<EdgeIndex<Ix>>

Accessor for data structure internals: the first edge in the given direction.

source#### pub fn next_edge(
&self,
e: EdgeIndex<Ix>,
dir: Direction
) -> Option<EdgeIndex<Ix>>

#### pub fn next_edge( &self, e: EdgeIndex<Ix>, dir: Direction ) -> Option<EdgeIndex<Ix>>

Accessor for data structure internals: the next edge for the given direction.

source#### pub fn index_twice_mut<T, U>(
&mut self,
i: T,
j: U
) -> (&mut <Graph<N, E, Ty, Ix> as Index<T>>::Output, &mut <Graph<N, E, Ty, Ix> as Index<U>>::Output)where
Graph<N, E, Ty, Ix>: IndexMut<T> + IndexMut<U>,
T: GraphIndex,
U: GraphIndex,

#### pub fn index_twice_mut<T, U>( &mut self, i: T, j: U ) -> (&mut <Graph<N, E, Ty, Ix> as Index<T>>::Output, &mut <Graph<N, E, Ty, Ix> as Index<U>>::Output)where Graph<N, E, Ty, Ix>: IndexMut<T> + IndexMut<U>, T: GraphIndex, U: GraphIndex,

Index the `Graph`

by two indices, any combination of
node or edge indices is fine.

**Panics** if the indices are equal or if they are out of bounds.

```
use petgraph::{Graph, Incoming};
use petgraph::visit::Dfs;
let mut gr = Graph::new();
let a = gr.add_node(0.);
let b = gr.add_node(0.);
let c = gr.add_node(0.);
gr.add_edge(a, b, 3.);
gr.add_edge(b, c, 2.);
gr.add_edge(c, b, 1.);
// walk the graph and sum incoming edges into the node weight
let mut dfs = Dfs::new(&gr, a);
while let Some(node) = dfs.next(&gr) {
// use a walker -- a detached neighbors iterator
let mut edges = gr.neighbors_directed(node, Incoming).detach();
while let Some(edge) = edges.next_edge(&gr) {
let (nw, ew) = gr.index_twice_mut(node, edge);
*nw += *ew;
}
}
// check the result
assert_eq!(gr[a], 0.);
assert_eq!(gr[b], 4.);
assert_eq!(gr[c], 2.);
```

source#### pub fn clear_edges(&mut self)

#### pub fn clear_edges(&mut self)

Remove all edges

source#### pub fn capacity(&self) -> (usize, usize)

#### pub fn capacity(&self) -> (usize, usize)

Return the current node and edge capacity of the graph.

source#### pub fn reserve_nodes(&mut self, additional: usize)

#### pub fn reserve_nodes(&mut self, additional: usize)

Reserves capacity for at least `additional`

more nodes to be inserted in
the graph. Graph may reserve more space to avoid frequent reallocations.

**Panics** if the new capacity overflows `usize`

.

source#### pub fn reserve_edges(&mut self, additional: usize)

#### pub fn reserve_edges(&mut self, additional: usize)

Reserves capacity for at least `additional`

more edges to be inserted in
the graph. Graph may reserve more space to avoid frequent reallocations.

**Panics** if the new capacity overflows `usize`

.

source#### pub fn reserve_exact_nodes(&mut self, additional: usize)

#### pub fn reserve_exact_nodes(&mut self, additional: usize)

Reserves the minimum capacity for exactly `additional`

more nodes to be
inserted in the graph. Does nothing if the capacity is already
sufficient.

Prefer `reserve_nodes`

if future insertions are expected.

**Panics** if the new capacity overflows `usize`

.

source#### pub fn reserve_exact_edges(&mut self, additional: usize)

#### pub fn reserve_exact_edges(&mut self, additional: usize)

Reserves the minimum capacity for exactly `additional`

more edges to be
inserted in the graph.
Does nothing if the capacity is already sufficient.

Prefer `reserve_edges`

if future insertions are expected.

**Panics** if the new capacity overflows `usize`

.

source#### pub fn shrink_to_fit_nodes(&mut self)

#### pub fn shrink_to_fit_nodes(&mut self)

Shrinks the capacity of the underlying nodes collection as much as possible.

source#### pub fn shrink_to_fit_edges(&mut self)

#### pub fn shrink_to_fit_edges(&mut self)

Shrinks the capacity of the underlying edges collection as much as possible.

source#### pub fn shrink_to_fit(&mut self)

#### pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the graph as much as possible.

source#### pub fn retain_nodes<F>(&mut self, visit: F)where
F: FnMut(Frozen<'_, Graph<N, E, Ty, Ix>>, NodeIndex<Ix>) -> bool,

#### pub fn retain_nodes<F>(&mut self, visit: F)where F: FnMut(Frozen<'_, Graph<N, E, Ty, Ix>>, NodeIndex<Ix>) -> bool,

Keep all nodes that return `true`

from the `visit`

closure,
remove the others.

`visit`

is provided a proxy reference to the graph, so that
the graph can be walked and associated data modified.

The order nodes are visited is not specified.

source#### pub fn retain_edges<F>(&mut self, visit: F)where
F: FnMut(Frozen<'_, Graph<N, E, Ty, Ix>>, EdgeIndex<Ix>) -> bool,

#### pub fn retain_edges<F>(&mut self, visit: F)where F: FnMut(Frozen<'_, Graph<N, E, Ty, Ix>>, EdgeIndex<Ix>) -> bool,

Keep all edges that return `true`

from the `visit`

closure,
remove the others.

`visit`

is provided a proxy reference to the graph, so that
the graph can be walked and associated data modified.

The order edges are visited is not specified.

source#### pub fn from_edges<I>(iterable: I) -> Graph<N, E, Ty, Ix>where
I: IntoIterator,
<I as IntoIterator>::Item: IntoWeightedEdge<E>,
<<I as IntoIterator>::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
N: Default,

#### pub fn from_edges<I>(iterable: I) -> Graph<N, E, Ty, Ix>where I: IntoIterator, <I as IntoIterator>::Item: IntoWeightedEdge<E>, <<I as IntoIterator>::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>, N: Default,

Create a new `Graph`

from an iterable of edges.

Node weights `N`

are set to default values.
Edge weights `E`

may either be specified in the list,
or they are filled with default values.

Nodes are inserted automatically to match the edges.

```
use petgraph::Graph;
let gr = Graph::<(), i32>::from_edges(&[
(0, 1), (0, 2), (0, 3),
(1, 2), (1, 3),
(2, 3),
]);
```

source#### pub fn extend_with_edges<I>(&mut self, iterable: I)where
I: IntoIterator,
<I as IntoIterator>::Item: IntoWeightedEdge<E>,
<<I as IntoIterator>::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
N: Default,

#### pub fn extend_with_edges<I>(&mut self, iterable: I)where I: IntoIterator, <I as IntoIterator>::Item: IntoWeightedEdge<E>, <<I as IntoIterator>::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>, N: Default,

Extend the graph from an iterable of edges.

Node weights `N`

are set to default values.
Edge weights `E`

may either be specified in the list,
or they are filled with default values.

Nodes are inserted automatically to match the edges.

source#### pub fn map<'a, F, G, N2, E2>(
&'a self,
node_map: F,
edge_map: G
) -> Graph<N2, E2, Ty, Ix>where
F: FnMut(NodeIndex<Ix>, &'a N) -> N2,
G: FnMut(EdgeIndex<Ix>, &'a E) -> E2,

#### pub fn map<'a, F, G, N2, E2>( &'a self, node_map: F, edge_map: G ) -> Graph<N2, E2, Ty, Ix>where F: FnMut(NodeIndex<Ix>, &'a N) -> N2, G: FnMut(EdgeIndex<Ix>, &'a E) -> E2,

Create a new `Graph`

by mapping node and
edge weights to new values.

The resulting graph has the same structure and the same
graph indices as `self`

.

source#### pub fn filter_map<'a, F, G, N2, E2>(
&'a self,
node_map: F,
edge_map: G
) -> Graph<N2, E2, Ty, Ix>where
F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>,
G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>,

#### pub fn filter_map<'a, F, G, N2, E2>( &'a self, node_map: F, edge_map: G ) -> Graph<N2, E2, Ty, Ix>where F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>, G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>,

Create a new `Graph`

by mapping nodes and edges.
A node or edge may be mapped to `None`

to exclude it from
the resulting graph.

Nodes are mapped first with the `node_map`

closure, then
`edge_map`

is called for the edges that have not had any endpoint
removed.

The resulting graph has the structure of a subgraph of the original graph.
If no nodes are removed, the resulting graph has compatible node
indices; if neither nodes nor edges are removed, the result has
the same graph indices as `self`

.

source#### pub fn into_edge_type<NewTy>(self) -> Graph<N, E, NewTy, Ix>where
NewTy: EdgeType,

#### pub fn into_edge_type<NewTy>(self) -> Graph<N, E, NewTy, Ix>where NewTy: EdgeType,

Convert the graph into either undirected or directed. No edge adjustments are done, so you may want to go over the result to remove or add edges.

Computes in **O(1)** time.

## Trait Implementations§

source§### impl<N, E, Ty, Ix> Build for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> Build for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

#### fn add_node( &mut self, weight: <Graph<N, E, Ty, Ix> as Data>::NodeWeight ) -> <Graph<N, E, Ty, Ix> as GraphBase>::NodeId

source§#### fn add_edge(
&mut self,
a: <Graph<N, E, Ty, Ix> as GraphBase>::NodeId,
b: <Graph<N, E, Ty, Ix> as GraphBase>::NodeId,
weight: <Graph<N, E, Ty, Ix> as Data>::EdgeWeight
) -> Option<<Graph<N, E, Ty, Ix> as GraphBase>::EdgeId>

#### fn add_edge( &mut self, a: <Graph<N, E, Ty, Ix> as GraphBase>::NodeId, b: <Graph<N, E, Ty, Ix> as GraphBase>::NodeId, weight: <Graph<N, E, Ty, Ix> as Data>::EdgeWeight ) -> Option<<Graph<N, E, Ty, Ix> as GraphBase>::EdgeId>

`None`

.source§### impl<N, E, Ty, Ix> Clone for Graph<N, E, Ty, Ix>where
Ix: IndexType,
N: Clone,
E: Clone,

### impl<N, E, Ty, Ix> Clone for Graph<N, E, Ty, Ix>where Ix: IndexType, N: Clone, E: Clone,

The resulting cloned graph has the same graph indices as `self`

.

source§### impl<N, E, Ty, Ix> Data for Graph<N, E, Ty, Ix>where
Ix: IndexType,

### impl<N, E, Ty, Ix> Data for Graph<N, E, Ty, Ix>where Ix: IndexType,

#### type NodeWeight = N

#### type EdgeWeight = E

source§### impl<N, E, Ty, Ix> DataMap for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> DataMap for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

#### fn node_weight( &self, id: <Graph<N, E, Ty, Ix> as GraphBase>::NodeId ) -> Option<&<Graph<N, E, Ty, Ix> as Data>::NodeWeight>

#### fn edge_weight( &self, id: <Graph<N, E, Ty, Ix> as GraphBase>::EdgeId ) -> Option<&<Graph<N, E, Ty, Ix> as Data>::EdgeWeight>

source§### impl<N, E, Ty, Ix> DataMapMut for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> DataMapMut for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

#### fn node_weight_mut( &mut self, id: <Graph<N, E, Ty, Ix> as GraphBase>::NodeId ) -> Option<&mut <Graph<N, E, Ty, Ix> as Data>::NodeWeight>

#### fn edge_weight_mut( &mut self, id: <Graph<N, E, Ty, Ix> as GraphBase>::EdgeId ) -> Option<&mut <Graph<N, E, Ty, Ix> as Data>::EdgeWeight>

source§### impl<N, E, Ty, Ix> Debug for Graph<N, E, Ty, Ix>where
N: Debug,
E: Debug,
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> Debug for Graph<N, E, Ty, Ix>where N: Debug, E: Debug, Ty: EdgeType, Ix: IndexType,

source§### impl<N, E, Ty, Ix> Default for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> Default for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

Create a new empty `Graph`

.

source§### impl<N, E, Ty, Ix> EdgeCount for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> EdgeCount for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

source§#### fn edge_count(&self) -> usize

#### fn edge_count(&self) -> usize

source§### impl<N, E, Ty, Ix> EdgeIndexable for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> EdgeIndexable for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

source§#### fn edge_bound(&self) -> usize

#### fn edge_bound(&self) -> usize

source§### impl<N, E, Ty, Ix> From<StableGraph<N, E, Ty, Ix>> for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> From<StableGraph<N, E, Ty, Ix>> for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

Convert a `StableGraph`

into a `Graph`

Computes in **O(|V| + |E|)** time.

This translates the stable graph into a graph with node and edge indices in
a compact interval without holes (like `Graph`

s always are).

Only if the stable graph had no vacancies after deletions (if node bound was equal to node count, and the same for edges), would the resulting graph have the same node and edge indices as the input.

source§#### fn from(graph: StableGraph<N, E, Ty, Ix>) -> Graph<N, E, Ty, Ix>

#### fn from(graph: StableGraph<N, E, Ty, Ix>) -> Graph<N, E, Ty, Ix>

source§### impl<N, E, Ty, Ix> FromElements for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> FromElements for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

#### fn from_elements<I>(iterable: I) -> Graph<N, E, Ty, Ix>where Graph<N, E, Ty, Ix>: Sized, I: IntoIterator<Item = Element<<Graph<N, E, Ty, Ix> as Data>::NodeWeight, <Graph<N, E, Ty, Ix> as Data>::EdgeWeight>>,

source§### impl<N, E, Ty, Ix> GetAdjacencyMatrix for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> GetAdjacencyMatrix for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

The adjacency matrix for **Graph** is a bitmap that’s computed by
`.adjacency_matrix()`

.

§#### type AdjMatrix = FixedBitSet

#### type AdjMatrix = FixedBitSet

source§#### fn adjacency_matrix(&self) -> FixedBitSet

#### fn adjacency_matrix(&self) -> FixedBitSet

source§#### fn is_adjacent(
&self,
matrix: &FixedBitSet,
a: NodeIndex<Ix>,
b: NodeIndex<Ix>
) -> bool

#### fn is_adjacent( &self, matrix: &FixedBitSet, a: NodeIndex<Ix>, b: NodeIndex<Ix> ) -> bool

source§### impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

Index the `Graph`

by `EdgeIndex`

to access edge weights.

**Panics** if the edge doesn’t exist.

source§### impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

Index the `Graph`

by `NodeIndex`

to access node weights.

**Panics** if the node doesn’t exist.

source§### impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

Index the `Graph`

by `EdgeIndex`

to access edge weights.

**Panics** if the edge doesn’t exist.

source§### impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>where
Ty: EdgeType,
Ix: IndexType,

### impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>where Ty: EdgeType, Ix: IndexType,

Index the `Graph`

by `NodeIndex`

to access node weights.

**Panics** if the node doesn’t exist.