pub fn dag_to_toposorted_adjacency_list<G, Ix>(
    g: G,
    toposort: &[<G as GraphBase>::NodeId]
) -> (List<(), Ix>, Vec<Ix, Global>)where
    Ix: IndexType,
    G: GraphBase + IntoNeighborsDirected + NodeCompactIndexable + NodeCount,
    <G as GraphBase>::NodeId: IndexType,
Expand description

Creates a representation of the same graph respecting topological order for use in tred::dag_transitive_reduction_closure.

toposort must be a topological order on the node indices of g (for example obtained from toposort).

Returns a pair of a graph res and the reciprocal of the topological sort revmap.

res is the same graph as g with the following differences:

  • Node and edge weights are stripped,
  • Node indices are replaced by the corresponding rank in toposort,
  • Iterating on the neighbors of a node respects topological order.

revmap is handy to get back to map indices in g to indices in res.

use petgraph::prelude::*;
use petgraph::graph::DefaultIx;
use petgraph::visit::IntoNeighbors;
use petgraph::algo::tred::dag_to_toposorted_adjacency_list;

let mut g = Graph::<&str, (), Directed, DefaultIx>::new();
let second = g.add_node("second child");
let top = g.add_node("top");
let first = g.add_node("first child");
g.extend_with_edges(&[(top, second), (top, first), (first, second)]);

let toposort = vec![top, first, second];

let (res, revmap) = dag_to_toposorted_adjacency_list(&g, &toposort);

// let's compute the children of top in topological order
let children: Vec<NodeIndex> = res
    .map(|ix: NodeIndex| toposort[ix.index()])
assert_eq!(children, vec![first, second])

Runtime: O(|V| + |E|).

Space complexity: O(|V| + |E|).