Struct bevy::render::renderer::RenderContext

pub struct RenderContext<'w> { /* private fields */ }
Expand description

The context with all information required to interact with the GPU.

The RenderDevice is used to create render resources and the the CommandEncoder is used to record a series of GPU operations.

Implementations§

§

impl<'w> RenderContext<'w>

pub fn new( render_device: RenderDevice, adapter_info: AdapterInfo, diagnostics_recorder: Option<DiagnosticsRecorder>, ) -> RenderContext<'w>

Creates a new RenderContext from a RenderDevice.

pub fn render_device(&self) -> &RenderDevice

Gets the underlying RenderDevice.

Examples found in repository?
examples/app/headless_renderer.rs (line 357)
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        world: &World,
    ) -> Result<(), NodeRunError> {
        let image_copiers = world.get_resource::<ImageCopiers>().unwrap();
        let gpu_images = world
            .get_resource::<RenderAssets<bevy::render::texture::GpuImage>>()
            .unwrap();

        for image_copier in image_copiers.iter() {
            if !image_copier.enabled() {
                continue;
            }

            let src_image = gpu_images.get(&image_copier.src_image).unwrap();

            let mut encoder = render_context
                .render_device()
                .create_command_encoder(&CommandEncoderDescriptor::default());

            let block_dimensions = src_image.texture_format.block_dimensions();
            let block_size = src_image.texture_format.block_copy_size(None).unwrap();

            // Calculating correct size of image row because
            // copy_texture_to_buffer can copy image only by rows aligned wgpu::COPY_BYTES_PER_ROW_ALIGNMENT
            // That's why image in buffer can be little bit wider
            // This should be taken into account at copy from buffer stage
            let padded_bytes_per_row = RenderDevice::align_copy_bytes_per_row(
                (src_image.size.x as usize / block_dimensions.0 as usize) * block_size as usize,
            );

            let texture_extent = Extent3d {
                width: src_image.size.x,
                height: src_image.size.y,
                depth_or_array_layers: 1,
            };

            encoder.copy_texture_to_buffer(
                src_image.texture.as_image_copy(),
                ImageCopyBuffer {
                    buffer: &image_copier.buffer,
                    layout: ImageDataLayout {
                        offset: 0,
                        bytes_per_row: Some(
                            std::num::NonZeroU32::new(padded_bytes_per_row as u32)
                                .unwrap()
                                .into(),
                        ),
                        rows_per_image: None,
                    },
                },
                texture_extent,
            );

            let render_queue = world.get_resource::<RenderQueue>().unwrap();
            render_queue.submit(std::iter::once(encoder.finish()));
        }

        Ok(())
    }
More examples
Hide additional examples
examples/shader/post_processing.rs (line 187)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings, settings_index): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // Get the pipeline resource that contains the global data we need
        // to create the render pipeline
        let post_process_pipeline = world.resource::<PostProcessPipeline>();

        // The pipeline cache is a cache of all previously created pipelines.
        // It is required to avoid creating a new pipeline each frame,
        // which is expensive due to shader compilation.
        let pipeline_cache = world.resource::<PipelineCache>();

        // Get the pipeline from the cache
        let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
        else {
            return Ok(());
        };

        // Get the settings uniform binding
        let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
        let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
            return Ok(());
        };

        // This will start a new "post process write", obtaining two texture
        // views from the view target - a `source` and a `destination`.
        // `source` is the "current" main texture and you _must_ write into
        // `destination` because calling `post_process_write()` on the
        // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
        // texture to the `destination` texture. Failing to do so will cause
        // the current main texture information to be lost.
        let post_process = view_target.post_process_write();

        // The bind_group gets created each frame.
        //
        // Normally, you would create a bind_group in the Queue set,
        // but this doesn't work with the post_process_write().
        // The reason it doesn't work is because each post_process_write will alternate the source/destination.
        // The only way to have the correct source/destination for the bind_group
        // is to make sure you get it during the node execution.
        let bind_group = render_context.render_device().create_bind_group(
            "post_process_bind_group",
            &post_process_pipeline.layout,
            // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
            &BindGroupEntries::sequential((
                // Make sure to use the source view
                post_process.source,
                // Use the sampler created for the pipeline
                &post_process_pipeline.sampler,
                // Set the settings binding
                settings_binding.clone(),
            )),
        );

        // Begin the render pass
        let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
            label: Some("post_process_pass"),
            color_attachments: &[Some(RenderPassColorAttachment {
                // We need to specify the post process destination view here
                // to make sure we write to the appropriate texture.
                view: post_process.destination,
                resolve_target: None,
                ops: Operations::default(),
            })],
            depth_stencil_attachment: None,
            timestamp_writes: None,
            occlusion_query_set: None,
        });

        // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
        // using the pipeline/bind_group created above
        render_pass.set_render_pipeline(pipeline);
        // By passing in the index of the post process settings on this view, we ensure
        // that in the event that multiple settings were sent to the GPU (as would be the
        // case with multiple cameras), we use the correct one.
        render_pass.set_bind_group(0, &bind_group, &[settings_index.index()]);
        render_pass.draw(0..3, 0..1);

        Ok(())
    }

pub fn diagnostic_recorder(&self) -> impl RecordDiagnostics

Gets the diagnostics recorder, used to track elapsed time and pipeline statistics of various render and compute passes.

pub fn command_encoder(&mut self) -> &mut CommandEncoder

Gets the current CommandEncoder.

Examples found in repository?
examples/shader/gpu_readback.rs (line 288)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    fn run(
        &self,
        _graph: &mut render_graph::RenderGraphContext,
        render_context: &mut RenderContext,
        world: &World,
    ) -> Result<(), render_graph::NodeRunError> {
        let pipeline_cache = world.resource::<PipelineCache>();
        let pipeline = world.resource::<ComputePipeline>();
        let bind_group = world.resource::<GpuBufferBindGroup>();

        if let Some(init_pipeline) = pipeline_cache.get_compute_pipeline(pipeline.pipeline) {
            let mut pass =
                render_context
                    .command_encoder()
                    .begin_compute_pass(&ComputePassDescriptor {
                        label: Some("GPU readback compute pass"),
                        ..default()
                    });

            pass.set_bind_group(0, &bind_group.0, &[]);
            pass.set_pipeline(init_pipeline);
            pass.dispatch_workgroups(BUFFER_LEN as u32, 1, 1);
        }

        // Copy the gpu accessible buffer to the cpu accessible buffer
        let buffers = world.resource::<Buffers>();
        render_context.command_encoder().copy_buffer_to_buffer(
            buffers
                .gpu_buffer
                .buffer()
                .expect("Buffer should have already been uploaded to the gpu"),
            0,
            &buffers.cpu_buffer,
            0,
            (BUFFER_LEN * std::mem::size_of::<u32>()) as u64,
        );

        Ok(())
    }
More examples
Hide additional examples
examples/shader/compute_shader_game_of_life.rs (line 266)
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    fn run(
        &self,
        _graph: &mut render_graph::RenderGraphContext,
        render_context: &mut RenderContext,
        world: &World,
    ) -> Result<(), render_graph::NodeRunError> {
        let bind_groups = &world.resource::<GameOfLifeImageBindGroups>().0;
        let pipeline_cache = world.resource::<PipelineCache>();
        let pipeline = world.resource::<GameOfLifePipeline>();

        let mut pass = render_context
            .command_encoder()
            .begin_compute_pass(&ComputePassDescriptor::default());

        // select the pipeline based on the current state
        match self.state {
            GameOfLifeState::Loading => {}
            GameOfLifeState::Init => {
                let init_pipeline = pipeline_cache
                    .get_compute_pipeline(pipeline.init_pipeline)
                    .unwrap();
                pass.set_bind_group(0, &bind_groups[0], &[]);
                pass.set_pipeline(init_pipeline);
                pass.dispatch_workgroups(SIZE.0 / WORKGROUP_SIZE, SIZE.1 / WORKGROUP_SIZE, 1);
            }
            GameOfLifeState::Update(index) => {
                let update_pipeline = pipeline_cache
                    .get_compute_pipeline(pipeline.update_pipeline)
                    .unwrap();
                pass.set_bind_group(0, &bind_groups[index], &[]);
                pass.set_pipeline(update_pipeline);
                pass.dispatch_workgroups(SIZE.0 / WORKGROUP_SIZE, SIZE.1 / WORKGROUP_SIZE, 1);
            }
        }

        Ok(())
    }

pub fn begin_tracked_render_pass<'a>( &'a mut self, descriptor: RenderPassDescriptor<'a, '_>, ) -> TrackedRenderPass<'a>

Creates a new TrackedRenderPass for the context, configured using the provided descriptor.

Examples found in repository?
examples/shader/post_processing.rs (lines 202-214)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings, settings_index): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // Get the pipeline resource that contains the global data we need
        // to create the render pipeline
        let post_process_pipeline = world.resource::<PostProcessPipeline>();

        // The pipeline cache is a cache of all previously created pipelines.
        // It is required to avoid creating a new pipeline each frame,
        // which is expensive due to shader compilation.
        let pipeline_cache = world.resource::<PipelineCache>();

        // Get the pipeline from the cache
        let Some(pipeline) = pipeline_cache.get_render_pipeline(post_process_pipeline.pipeline_id)
        else {
            return Ok(());
        };

        // Get the settings uniform binding
        let settings_uniforms = world.resource::<ComponentUniforms<PostProcessSettings>>();
        let Some(settings_binding) = settings_uniforms.uniforms().binding() else {
            return Ok(());
        };

        // This will start a new "post process write", obtaining two texture
        // views from the view target - a `source` and a `destination`.
        // `source` is the "current" main texture and you _must_ write into
        // `destination` because calling `post_process_write()` on the
        // [`ViewTarget`] will internally flip the [`ViewTarget`]'s main
        // texture to the `destination` texture. Failing to do so will cause
        // the current main texture information to be lost.
        let post_process = view_target.post_process_write();

        // The bind_group gets created each frame.
        //
        // Normally, you would create a bind_group in the Queue set,
        // but this doesn't work with the post_process_write().
        // The reason it doesn't work is because each post_process_write will alternate the source/destination.
        // The only way to have the correct source/destination for the bind_group
        // is to make sure you get it during the node execution.
        let bind_group = render_context.render_device().create_bind_group(
            "post_process_bind_group",
            &post_process_pipeline.layout,
            // It's important for this to match the BindGroupLayout defined in the PostProcessPipeline
            &BindGroupEntries::sequential((
                // Make sure to use the source view
                post_process.source,
                // Use the sampler created for the pipeline
                &post_process_pipeline.sampler,
                // Set the settings binding
                settings_binding.clone(),
            )),
        );

        // Begin the render pass
        let mut render_pass = render_context.begin_tracked_render_pass(RenderPassDescriptor {
            label: Some("post_process_pass"),
            color_attachments: &[Some(RenderPassColorAttachment {
                // We need to specify the post process destination view here
                // to make sure we write to the appropriate texture.
                view: post_process.destination,
                resolve_target: None,
                ops: Operations::default(),
            })],
            depth_stencil_attachment: None,
            timestamp_writes: None,
            occlusion_query_set: None,
        });

        // This is mostly just wgpu boilerplate for drawing a fullscreen triangle,
        // using the pipeline/bind_group created above
        render_pass.set_render_pipeline(pipeline);
        // By passing in the index of the post process settings on this view, we ensure
        // that in the event that multiple settings were sent to the GPU (as would be the
        // case with multiple cameras), we use the correct one.
        render_pass.set_bind_group(0, &bind_group, &[settings_index.index()]);
        render_pass.draw(0..3, 0..1);

        Ok(())
    }

pub fn add_command_buffer(&mut self, command_buffer: CommandBuffer)

Append a [CommandBuffer] to the command buffer queue.

If present, this will flush the currently unflushed CommandEncoder into a [CommandBuffer] into the queue before appending the provided buffer.

pub fn add_command_buffer_generation_task( &mut self, task: impl FnOnce(RenderDevice) -> CommandBuffer + Send + 'w, )

Append a function that will generate a [CommandBuffer] to the command buffer queue, to be ran later.

If present, this will flush the currently unflushed CommandEncoder into a [CommandBuffer] into the queue before appending the provided buffer.

pub fn finish( self, ) -> (Vec<CommandBuffer>, RenderDevice, Option<DiagnosticsRecorder>)

Finalizes and returns the queue of [CommandBuffer]s.

This function will wait until all command buffer generation tasks are complete by running them in parallel (where supported).

The [CommandBuffer]s will be returned in the order that they were added.

Auto Trait Implementations§

§

impl<'w> Freeze for RenderContext<'w>

§

impl<'w> !RefUnwindSafe for RenderContext<'w>

§

impl<'w> Send for RenderContext<'w>

§

impl<'w> !Sync for RenderContext<'w>

§

impl<'w> Unpin for RenderContext<'w>

§

impl<'w> !UnwindSafe for RenderContext<'w>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> WasmNotSend for T
where T: Send,