Struct bevy::ecs::world::EntityWorldMut

pub struct EntityWorldMut<'w> { /* private fields */ }
Expand description

A mutable reference to a particular Entity, and the entire world. This is essentially a performance-optimized (Entity, &mut World) tuple, which caches the EntityLocation to reduce duplicate lookups.

Since this type provides mutable access to the entire world, only one EntityWorldMut can exist at a time for a given world.

See also EntityMut, which allows disjoint mutable access to multiple entities at once. Unlike EntityMut, this type allows adding and removing components, and despawning the entity.

Implementations§

§

impl<'w> EntityWorldMut<'w>

pub fn id(&self) -> Entity

Returns the ID of the current entity.

Examples found in repository?
examples/ecs/dynamic.rs (line 145)
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
fn main() {
    let mut world = World::new();
    let mut lines = std::io::stdin().lines();
    let mut component_names = HashMap::<String, ComponentId>::new();
    let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();

    println!("{}", PROMPT);
    loop {
        print!("\n> ");
        let _ = std::io::stdout().flush();
        let Some(Ok(line)) = lines.next() else {
            return;
        };

        if line.is_empty() {
            return;
        };

        let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
            match &line.chars().next() {
                Some('c') => println!("{}", COMPONENT_PROMPT),
                Some('s') => println!("{}", ENTITY_PROMPT),
                Some('q') => println!("{}", QUERY_PROMPT),
                _ => println!("{}", PROMPT),
            }
            continue;
        };

        match &first[0..1] {
            "c" => {
                rest.split(',').for_each(|component| {
                    let mut component = component.split_whitespace();
                    let Some(name) = component.next() else {
                        return;
                    };
                    let size = match component.next().map(|s| s.parse::<usize>()) {
                        Some(Ok(size)) => size,
                        _ => 0,
                    };
                    // Register our new component to the world with a layout specified by it's size
                    // SAFETY: [u64] is Send + Sync
                    let id = world.init_component_with_descriptor(unsafe {
                        ComponentDescriptor::new_with_layout(
                            name.to_string(),
                            StorageType::Table,
                            Layout::array::<u64>(size).unwrap(),
                            None,
                        )
                    });
                    let Some(info) = world.components().get_info(id) else {
                        return;
                    };
                    component_names.insert(name.to_string(), id);
                    component_info.insert(id, info.clone());
                    println!("Component {} created with id: {:?}", name, id.index());
                });
            }
            "s" => {
                let mut to_insert_ids = Vec::new();
                let mut to_insert_data = Vec::new();
                rest.split(',').for_each(|component| {
                    let mut component = component.split_whitespace();
                    let Some(name) = component.next() else {
                        return;
                    };

                    // Get the id for the component with the given name
                    let Some(&id) = component_names.get(name) else {
                        println!("Component {} does not exist", name);
                        return;
                    };

                    // Calculate the length for the array based on the layout created for this component id
                    let info = world.components().get_info(id).unwrap();
                    let len = info.layout().size() / std::mem::size_of::<u64>();
                    let mut values: Vec<u64> = component
                        .take(len)
                        .filter_map(|value| value.parse::<u64>().ok())
                        .collect();
                    values.resize(len, 0);

                    // Collect the id and array to be inserted onto our entity
                    to_insert_ids.push(id);
                    to_insert_data.push(values);
                });

                let mut entity = world.spawn_empty();

                // Construct an `OwningPtr` for each component in `to_insert_data`
                let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);

                // SAFETY:
                // - Component ids have been taken from the same world
                // - Each array is created to the layout specified in the world
                unsafe {
                    entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
                }

                println!("Entity spawned with id: {:?}", entity.id());
            }
            "q" => {
                let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
                parse_query(rest, &mut builder, &component_names);
                let mut query = builder.build();

                query.iter_mut(&mut world).for_each(|filtered_entity| {
                    let terms = filtered_entity
                        .components()
                        .map(|id| {
                            let ptr = filtered_entity.get_by_id(id).unwrap();
                            let info = component_info.get(&id).unwrap();
                            let len = info.layout().size() / std::mem::size_of::<u64>();

                            // SAFETY:
                            // - All components are created with layout [u64]
                            // - len is calculated from the component descriptor
                            let data = unsafe {
                                std::slice::from_raw_parts_mut(
                                    ptr.assert_unique().as_ptr().cast::<u64>(),
                                    len,
                                )
                            };

                            // If we have write access, increment each value once
                            if filtered_entity.access().has_write(id) {
                                data.iter_mut().for_each(|data| {
                                    *data += 1;
                                });
                            }

                            format!("{}: {:?}", info.name(), data[0..len].to_vec())
                        })
                        .collect::<Vec<_>>()
                        .join(", ");

                    println!("{:?}: {}", filtered_entity.id(), terms);
                });
            }
            _ => continue,
        }
    }
}

pub fn location(&self) -> EntityLocation

Gets metadata indicating the location where the current entity is stored.

pub fn archetype(&self) -> &Archetype

Returns the archetype that the current entity belongs to.

pub fn contains<T>(&self) -> bool
where T: Component,

Returns true if the current entity has a component of type T. Otherwise, this returns false.

§Notes

If you do not know the concrete type of a component, consider using Self::contains_id or Self::contains_type_id.

pub fn contains_id(&self, component_id: ComponentId) -> bool

Returns true if the current entity has a component identified by component_id. Otherwise, this returns false.

§Notes

pub fn contains_type_id(&self, type_id: TypeId) -> bool

Returns true if the current entity has a component with the type identified by type_id. Otherwise, this returns false.

§Notes

pub fn get<T>(&self) -> Option<&T>
where T: Component,

Gets access to the component of type T for the current entity. Returns None if the entity does not have a component of type T.

pub fn into_borrow<T>(self) -> Option<&'w T>
where T: Component,

Consumes self and gets access to the component of type T with the world 'w lifetime for the current entity. Returns None if the entity does not have a component of type T.

pub fn get_ref<T>(&self) -> Option<Ref<'_, T>>
where T: Component,

Gets access to the component of type T for the current entity, including change detection information as a Ref.

Returns None if the entity does not have a component of type T.

pub fn into_ref<T>(self) -> Option<Ref<'w, T>>
where T: Component,

Consumes self and gets access to the component of type T with the world 'w lifetime for the current entity, including change detection information as a Ref.

Returns None if the entity does not have a component of type T.

pub fn get_mut<T>(&mut self) -> Option<Mut<'_, T>>
where T: Component,

Gets mutable access to the component of type T for the current entity. Returns None if the entity does not have a component of type T.

pub fn into_mut<T>(self) -> Option<Mut<'w, T>>
where T: Component,

Consumes self and gets mutable access to the component of type T with the world 'w lifetime for the current entity. Returns None if the entity does not have a component of type T.

pub fn get_change_ticks<T>(&self) -> Option<ComponentTicks>
where T: Component,

Retrieves the change ticks for the given component. This can be useful for implementing change detection in custom runtimes.

pub fn get_change_ticks_by_id( &self, component_id: ComponentId, ) -> Option<ComponentTicks>

Retrieves the change ticks for the given ComponentId. This can be useful for implementing change detection in custom runtimes.

You should prefer to use the typed API EntityWorldMut::get_change_ticks where possible and only use this in cases where the actual component types are not known at compile time.

pub fn get_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>

Gets the component of the given ComponentId from the entity.

You should prefer to use the typed API EntityWorldMut::get where possible and only use this in cases where the actual component types are not known at compile time.

Unlike EntityWorldMut::get, this returns a raw pointer to the component, which is only valid while the EntityWorldMut is alive.

pub fn into_borrow_by_id(self, component_id: ComponentId) -> Option<Ptr<'w>>

Consumes self and gets the component of the given ComponentId with with world 'w lifetime from the entity.

You should prefer to use the typed API EntityWorldMut::into_borrow where possible and only use this in cases where the actual component types are not known at compile time.

pub fn get_mut_by_id( &mut self, component_id: ComponentId, ) -> Option<MutUntyped<'_>>

Gets a MutUntyped of the component of the given ComponentId from the entity.

You should prefer to use the typed API EntityWorldMut::get_mut where possible and only use this in cases where the actual component types are not known at compile time.

Unlike EntityWorldMut::get_mut, this returns a raw pointer to the component, which is only valid while the EntityWorldMut is alive.

pub fn into_mut_by_id(self, component_id: ComponentId) -> Option<MutUntyped<'w>>

Consumes self and gets a [MutUntyped<'w>] of the component with the world 'w lifetime of the given ComponentId from the entity.

You should prefer to use the typed API EntityWorldMut::into_mut where possible and only use this in cases where the actual component types are not known at compile time.

pub fn insert<T>(&mut self, bundle: T) -> &mut EntityWorldMut<'w>
where T: Bundle,

Adds a Bundle of components to the entity.

This will overwrite any previous value(s) of the same component type.

Examples found in repository?
examples/async_tasks/async_compute.rs (lines 89-94)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
fn spawn_tasks(mut commands: Commands) {
    let thread_pool = AsyncComputeTaskPool::get();
    for x in 0..NUM_CUBES {
        for y in 0..NUM_CUBES {
            for z in 0..NUM_CUBES {
                // Spawn new task on the AsyncComputeTaskPool; the task will be
                // executed in the background, and the Task future returned by
                // spawn() can be used to poll for the result
                let entity = commands.spawn_empty().id();
                let task = thread_pool.spawn(async move {
                    let duration = Duration::from_secs_f32(rand::thread_rng().gen_range(0.05..5.0));

                    // Pretend this is a time-intensive function. :)
                    async_std::task::sleep(duration).await;

                    // Such hard work, all done!
                    let transform = Transform::from_xyz(x as f32, y as f32, z as f32);
                    let mut command_queue = CommandQueue::default();

                    // we use a raw command queue to pass a FnOne(&mut World) back to be
                    // applied in a deferred manner.
                    command_queue.push(move |world: &mut World| {
                        let (box_mesh_handle, box_material_handle) = {
                            let mut system_state = SystemState::<(
                                Res<BoxMeshHandle>,
                                Res<BoxMaterialHandle>,
                            )>::new(world);
                            let (box_mesh_handle, box_material_handle) =
                                system_state.get_mut(world);

                            (box_mesh_handle.clone(), box_material_handle.clone())
                        };

                        world
                            .entity_mut(entity)
                            // Add our new PbrBundle of components to our tagged entity
                            .insert(PbrBundle {
                                mesh: box_mesh_handle,
                                material: box_material_handle,
                                transform,
                                ..default()
                            })
                            // Task is complete, so remove task component from entity
                            .remove::<ComputeTransform>();
                    });

                    command_queue
                });

                // Spawn new entity and add our new task as a component
                commands.entity(entity).insert(ComputeTransform(task));
            }
        }
    }
}

pub unsafe fn insert_by_id( &mut self, component_id: ComponentId, component: OwningPtr<'_>, ) -> &mut EntityWorldMut<'w>

Inserts a dynamic Component into the entity.

This will overwrite any previous value(s) of the same component type.

You should prefer to use the typed API EntityWorldMut::insert where possible.

§Safety

pub unsafe fn insert_by_ids<'a, I>( &mut self, component_ids: &[ComponentId], iter_components: I, ) -> &mut EntityWorldMut<'w>
where I: Iterator<Item = OwningPtr<'a>>,

Inserts a dynamic Bundle into the entity.

This will overwrite any previous value(s) of the same component type.

You should prefer to use the typed API EntityWorldMut::insert where possible. If your Bundle only has one component, use the cached API EntityWorldMut::insert_by_id.

If possible, pass a sorted slice of ComponentId to maximize caching potential.

§Safety
Examples found in repository?
examples/ecs/dynamic.rs (line 142)
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
fn main() {
    let mut world = World::new();
    let mut lines = std::io::stdin().lines();
    let mut component_names = HashMap::<String, ComponentId>::new();
    let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();

    println!("{}", PROMPT);
    loop {
        print!("\n> ");
        let _ = std::io::stdout().flush();
        let Some(Ok(line)) = lines.next() else {
            return;
        };

        if line.is_empty() {
            return;
        };

        let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
            match &line.chars().next() {
                Some('c') => println!("{}", COMPONENT_PROMPT),
                Some('s') => println!("{}", ENTITY_PROMPT),
                Some('q') => println!("{}", QUERY_PROMPT),
                _ => println!("{}", PROMPT),
            }
            continue;
        };

        match &first[0..1] {
            "c" => {
                rest.split(',').for_each(|component| {
                    let mut component = component.split_whitespace();
                    let Some(name) = component.next() else {
                        return;
                    };
                    let size = match component.next().map(|s| s.parse::<usize>()) {
                        Some(Ok(size)) => size,
                        _ => 0,
                    };
                    // Register our new component to the world with a layout specified by it's size
                    // SAFETY: [u64] is Send + Sync
                    let id = world.init_component_with_descriptor(unsafe {
                        ComponentDescriptor::new_with_layout(
                            name.to_string(),
                            StorageType::Table,
                            Layout::array::<u64>(size).unwrap(),
                            None,
                        )
                    });
                    let Some(info) = world.components().get_info(id) else {
                        return;
                    };
                    component_names.insert(name.to_string(), id);
                    component_info.insert(id, info.clone());
                    println!("Component {} created with id: {:?}", name, id.index());
                });
            }
            "s" => {
                let mut to_insert_ids = Vec::new();
                let mut to_insert_data = Vec::new();
                rest.split(',').for_each(|component| {
                    let mut component = component.split_whitespace();
                    let Some(name) = component.next() else {
                        return;
                    };

                    // Get the id for the component with the given name
                    let Some(&id) = component_names.get(name) else {
                        println!("Component {} does not exist", name);
                        return;
                    };

                    // Calculate the length for the array based on the layout created for this component id
                    let info = world.components().get_info(id).unwrap();
                    let len = info.layout().size() / std::mem::size_of::<u64>();
                    let mut values: Vec<u64> = component
                        .take(len)
                        .filter_map(|value| value.parse::<u64>().ok())
                        .collect();
                    values.resize(len, 0);

                    // Collect the id and array to be inserted onto our entity
                    to_insert_ids.push(id);
                    to_insert_data.push(values);
                });

                let mut entity = world.spawn_empty();

                // Construct an `OwningPtr` for each component in `to_insert_data`
                let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);

                // SAFETY:
                // - Component ids have been taken from the same world
                // - Each array is created to the layout specified in the world
                unsafe {
                    entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
                }

                println!("Entity spawned with id: {:?}", entity.id());
            }
            "q" => {
                let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
                parse_query(rest, &mut builder, &component_names);
                let mut query = builder.build();

                query.iter_mut(&mut world).for_each(|filtered_entity| {
                    let terms = filtered_entity
                        .components()
                        .map(|id| {
                            let ptr = filtered_entity.get_by_id(id).unwrap();
                            let info = component_info.get(&id).unwrap();
                            let len = info.layout().size() / std::mem::size_of::<u64>();

                            // SAFETY:
                            // - All components are created with layout [u64]
                            // - len is calculated from the component descriptor
                            let data = unsafe {
                                std::slice::from_raw_parts_mut(
                                    ptr.assert_unique().as_ptr().cast::<u64>(),
                                    len,
                                )
                            };

                            // If we have write access, increment each value once
                            if filtered_entity.access().has_write(id) {
                                data.iter_mut().for_each(|data| {
                                    *data += 1;
                                });
                            }

                            format!("{}: {:?}", info.name(), data[0..len].to_vec())
                        })
                        .collect::<Vec<_>>()
                        .join(", ");

                    println!("{:?}: {}", filtered_entity.id(), terms);
                });
            }
            _ => continue,
        }
    }
}

pub fn take<T>(&mut self) -> Option<T>
where T: Bundle,

Removes all components in the Bundle from the entity and returns their previous values.

Note: If the entity does not have every component in the bundle, this method will not remove any of them.

pub fn remove<T>(&mut self) -> &mut EntityWorldMut<'w>
where T: Bundle,

Removes any components in the Bundle from the entity.

See EntityCommands::remove for more details.

Examples found in repository?
examples/async_tasks/async_compute.rs (line 96)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
fn spawn_tasks(mut commands: Commands) {
    let thread_pool = AsyncComputeTaskPool::get();
    for x in 0..NUM_CUBES {
        for y in 0..NUM_CUBES {
            for z in 0..NUM_CUBES {
                // Spawn new task on the AsyncComputeTaskPool; the task will be
                // executed in the background, and the Task future returned by
                // spawn() can be used to poll for the result
                let entity = commands.spawn_empty().id();
                let task = thread_pool.spawn(async move {
                    let duration = Duration::from_secs_f32(rand::thread_rng().gen_range(0.05..5.0));

                    // Pretend this is a time-intensive function. :)
                    async_std::task::sleep(duration).await;

                    // Such hard work, all done!
                    let transform = Transform::from_xyz(x as f32, y as f32, z as f32);
                    let mut command_queue = CommandQueue::default();

                    // we use a raw command queue to pass a FnOne(&mut World) back to be
                    // applied in a deferred manner.
                    command_queue.push(move |world: &mut World| {
                        let (box_mesh_handle, box_material_handle) = {
                            let mut system_state = SystemState::<(
                                Res<BoxMeshHandle>,
                                Res<BoxMaterialHandle>,
                            )>::new(world);
                            let (box_mesh_handle, box_material_handle) =
                                system_state.get_mut(world);

                            (box_mesh_handle.clone(), box_material_handle.clone())
                        };

                        world
                            .entity_mut(entity)
                            // Add our new PbrBundle of components to our tagged entity
                            .insert(PbrBundle {
                                mesh: box_mesh_handle,
                                material: box_material_handle,
                                transform,
                                ..default()
                            })
                            // Task is complete, so remove task component from entity
                            .remove::<ComputeTransform>();
                    });

                    command_queue
                });

                // Spawn new entity and add our new task as a component
                commands.entity(entity).insert(ComputeTransform(task));
            }
        }
    }
}

pub fn retain<T>(&mut self) -> &mut EntityWorldMut<'w>
where T: Bundle,

Removes any components except those in the Bundle from the entity.

See EntityCommands::retain for more details.

pub fn remove_by_id( &mut self, component_id: ComponentId, ) -> &mut EntityWorldMut<'w>

Removes a dynamic Component from the entity if it exists.

You should prefer to use the typed API EntityWorldMut::remove where possible.

§Panics

Panics if the provided ComponentId does not exist in the World.

pub fn clear(&mut self) -> &mut EntityWorldMut<'w>

Removes all components associated with the entity.

pub fn despawn(self)

Despawns the current entity.

See World::despawn for more details.

pub fn flush(self) -> Entity

Ensures any commands triggered by the actions of Self are applied, equivalent to World::flush

pub fn world(&self) -> &World

Gets read-only access to the world that the current entity belongs to.

pub unsafe fn world_mut(&mut self) -> &mut World

Returns this entity’s world.

See EntityWorldMut::world_scope or EntityWorldMut::into_world_mut for a safe alternative.

§Safety

Caller must not modify the world in a way that changes the current entity’s location If the caller does do something that could change the location, self.update_location() must be called before using any other methods on this EntityWorldMut.

pub fn into_world_mut(self) -> &'w mut World

Returns this entity’s World, consuming itself.

pub fn world_scope<U>(&mut self, f: impl FnOnce(&mut World) -> U) -> U

Gives mutable access to this entity’s World in a temporary scope. This is a safe alternative to using EntityWorldMut::world_mut.

§Examples
#[derive(Resource, Default, Clone, Copy)]
struct R(u32);

// This closure gives us temporary access to the world.
let new_r = entity.world_scope(|world: &mut World| {
    // Mutate the world while we have access to it.
    let mut r = world.resource_mut::<R>();
    r.0 += 1;

    // Return a value from the world before giving it back to the `EntityWorldMut`.
    *r
});

pub fn update_location(&mut self)

Updates the internal entity location to match the current location in the internal World.

This is only required when using the unsafe function EntityWorldMut::world_mut, which enables the location to change.

pub fn entry<'a, T>(&'a mut self) -> Entry<'w, 'a, T>
where T: Component,

Gets an Entry into the world for this entity and component for in-place manipulation.

The type parameter specifies which component to get.

§Examples
#[derive(Component, Default, Clone, Copy, Debug, PartialEq)]
struct Comp(u32);

let mut entity = world.spawn_empty();
entity.entry().or_insert_with(|| Comp(4));
assert_eq!(world.query::<&Comp>().single(&world).0, 4);

entity.entry::<Comp>().and_modify(|mut c| c.0 += 1);
assert_eq!(world.query::<&Comp>().single(&world).0, 5);

pub fn observe<E, B, M>( &mut self, observer: impl IntoObserverSystem<E, B, M>, ) -> &mut EntityWorldMut<'w>
where E: Event, B: Bundle,

Creates an Observer listening for events of type E targeting this entity. In order to trigger the callback the entity must also match the query when the event is fired.

Trait Implementations§

§

impl<'w> BuildWorldChildren for EntityWorldMut<'w>

§

fn with_children( &mut self, spawn_children: impl FnOnce(&mut WorldChildBuilder<'_>), ) -> &mut EntityWorldMut<'w>

Takes a closure which builds children for this entity using WorldChildBuilder.
§

fn add_child(&mut self, child: Entity) -> &mut EntityWorldMut<'w>

Adds a single child. Read more
§

fn push_children(&mut self, children: &[Entity]) -> &mut EntityWorldMut<'w>

Pushes children to the back of the builder’s children. For any entities that are already a child of this one, this method does nothing. Read more
§

fn insert_children( &mut self, index: usize, children: &[Entity], ) -> &mut EntityWorldMut<'w>

Inserts children at the given index. Read more
§

fn remove_children(&mut self, children: &[Entity]) -> &mut EntityWorldMut<'w>

Removes the given children Read more
§

fn set_parent(&mut self, parent: Entity) -> &mut EntityWorldMut<'w>

Sets the parent of this entity. Read more
§

fn remove_parent(&mut self) -> &mut EntityWorldMut<'w>

Removes the Parent of this entity. Read more
§

fn clear_children(&mut self) -> &mut EntityWorldMut<'w>

Removes all children from this entity. The Children component will be removed if it exists, otherwise this does nothing.
§

fn replace_children(&mut self, children: &[Entity]) -> &mut EntityWorldMut<'w>

Removes all current children from this entity, replacing them with the specified list of entities. Read more
§

impl<'w> DespawnRecursiveExt for EntityWorldMut<'w>

§

fn despawn_recursive(self)

Despawns the provided entity and its children. This will emit warnings for any entity that does not exist.

§

fn despawn_descendants(&mut self) -> &mut EntityWorldMut<'w>

Despawns all descendants of the given entity.
§

impl<'a> From<&'a EntityWorldMut<'_>> for EntityRef<'a>

§

fn from(value: &'a EntityWorldMut<'_>) -> EntityRef<'a>

Converts to this type from the input type.
§

impl<'a> From<&'a EntityWorldMut<'_>> for FilteredEntityRef<'a>

§

fn from(entity: &'a EntityWorldMut<'_>) -> FilteredEntityRef<'a>

Converts to this type from the input type.
§

impl<'a> From<&'a mut EntityWorldMut<'_>> for EntityMut<'a>

§

fn from(value: &'a mut EntityWorldMut<'_>) -> EntityMut<'a>

Converts to this type from the input type.
§

impl<'a> From<&'a mut EntityWorldMut<'_>> for FilteredEntityMut<'a>

§

fn from(entity: &'a mut EntityWorldMut<'_>) -> FilteredEntityMut<'a>

Converts to this type from the input type.
§

impl<'a> From<EntityWorldMut<'a>> for FilteredEntityMut<'a>

§

fn from(entity: EntityWorldMut<'a>) -> FilteredEntityMut<'a>

Converts to this type from the input type.
§

impl<'a> From<EntityWorldMut<'a>> for FilteredEntityRef<'a>

§

fn from(entity: EntityWorldMut<'a>) -> FilteredEntityRef<'a>

Converts to this type from the input type.
§

impl<'w> From<EntityWorldMut<'w>> for EntityMut<'w>

§

fn from(value: EntityWorldMut<'w>) -> EntityMut<'w>

Converts to this type from the input type.
§

impl<'w> From<EntityWorldMut<'w>> for EntityRef<'w>

§

fn from(entity_mut: EntityWorldMut<'w>) -> EntityRef<'w>

Converts to this type from the input type.

Auto Trait Implementations§

§

impl<'w> Freeze for EntityWorldMut<'w>

§

impl<'w> !RefUnwindSafe for EntityWorldMut<'w>

§

impl<'w> Send for EntityWorldMut<'w>

§

impl<'w> Sync for EntityWorldMut<'w>

§

impl<'w> Unpin for EntityWorldMut<'w>

§

impl<'w> !UnwindSafe for EntityWorldMut<'w>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Settings for T
where T: 'static + Send + Sync,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSendSync for T
where T: WasmNotSend + WasmNotSync,

§

impl<T> WasmNotSync for T
where T: Sync,