Struct bevy::color::LinearRgba

#[repr(C)]
pub struct LinearRgba { pub red: f32, pub green: f32, pub blue: f32, pub alpha: f32, }
Expand description

Linear RGB color with alpha.

§Conversion

Conversion between the various color spaces is achieved using Rust’s native From trait. Because certain color spaces are defined by their transformation to and from another space, these From implementations reflect that set of definitions.

let color = Srgba::rgb(0.5, 0.5, 0.5);

// Using From explicitly
let linear_color = LinearRgba::from(color);

// Using Into
let linear_color: LinearRgba = color.into();

For example, the sRGB space is defined by its relationship with Linear RGB, and HWB by its with sRGB. As such, it is the responsibility of sRGB to provide From implementations for Linear RGB, and HWB for sRGB. To then provide conversion between Linear RGB and HWB directly, HWB is responsible for implementing these conversions, delegating to sRGB as an intermediatory. This ensures that all conversions take the shortest path between any two spaces, and limit the proliferation of domain specific knowledge for each color space to their respective definitions.

GPU

Fields§

§red: f32

The red channel. [0.0, 1.0]

§green: f32

The green channel. [0.0, 1.0]

§blue: f32

The blue channel. [0.0, 1.0]

§alpha: f32

The alpha channel. [0.0, 1.0]

Implementations§

§

impl LinearRgba

pub const BLACK: LinearRgba = _

A fully black color with full alpha.

pub const WHITE: LinearRgba = _

A fully white color with full alpha.

pub const NONE: LinearRgba = _

A fully transparent color.

pub const RED: LinearRgba = _

A fully red color with full alpha.

pub const GREEN: LinearRgba = _

A fully green color with full alpha.

pub const BLUE: LinearRgba = _

A fully blue color with full alpha.

pub const NAN: LinearRgba = _

An invalid color.

This type can be used to represent an invalid color value; in some rendering applications the color will be ignored, enabling performant hacks like hiding lines by setting their color to INVALID.

pub const fn new(red: f32, green: f32, blue: f32, alpha: f32) -> LinearRgba

Construct a new LinearRgba color from components.

Examples found in repository?
examples/3d/spotlight.rs (line 82)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    // ground plane
    commands.spawn((
        PbrBundle {
            mesh: meshes.add(Plane3d::default().mesh().size(100.0, 100.0)),
            material: materials.add(Color::WHITE),
            ..default()
        },
        Movable,
    ));

    // cubes

    // We're seeding the PRNG here to make this example deterministic for testing purposes.
    // This isn't strictly required in practical use unless you need your app to be deterministic.
    let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
    let cube_mesh = meshes.add(Cuboid::new(0.5, 0.5, 0.5));
    let blue = materials.add(Color::srgb_u8(124, 144, 255));

    commands.spawn_batch(
        std::iter::repeat_with(move || {
            let x = rng.gen_range(-5.0..5.0);
            let y = rng.gen_range(0.0..3.0);
            let z = rng.gen_range(-5.0..5.0);

            (
                PbrBundle {
                    mesh: cube_mesh.clone(),
                    material: blue.clone(),
                    transform: Transform::from_xyz(x, y, z),
                    ..default()
                },
                Movable,
            )
        })
        .take(40),
    );

    let sphere_mesh = meshes.add(Sphere::new(0.05).mesh().uv(32, 18));
    let sphere_mesh_direction = meshes.add(Sphere::new(0.1).mesh().uv(32, 18));
    let red_emissive = materials.add(StandardMaterial {
        base_color: RED.into(),
        emissive: LinearRgba::new(1.0, 0.0, 0.0, 0.0),
        ..default()
    });
    let maroon_emissive = materials.add(StandardMaterial {
        base_color: MAROON.into(),
        emissive: LinearRgba::new(0.369, 0.0, 0.0, 0.0),
        ..default()
    });

    for x in 0..4 {
        for z in 0..4 {
            let x = x as f32 - 2.0;
            let z = z as f32 - 2.0;
            // red spot_light
            commands
                .spawn(SpotLightBundle {
                    transform: Transform::from_xyz(1.0 + x, 2.0, z)
                        .looking_at(Vec3::new(1.0 + x, 0.0, z), Vec3::X),
                    spot_light: SpotLight {
                        intensity: 40_000.0, // lumens
                        color: Color::WHITE,
                        shadows_enabled: true,
                        inner_angle: PI / 4.0 * 0.85,
                        outer_angle: PI / 4.0,
                        ..default()
                    },
                    ..default()
                })
                .with_children(|builder| {
                    builder.spawn(PbrBundle {
                        mesh: sphere_mesh.clone(),
                        material: red_emissive.clone(),
                        ..default()
                    });
                    builder.spawn((
                        PbrBundle {
                            transform: Transform::from_translation(Vec3::Z * -0.1),
                            mesh: sphere_mesh_direction.clone(),
                            material: maroon_emissive.clone(),
                            ..default()
                        },
                        NotShadowCaster,
                    ));
                });
        }
    }

    // camera
    commands.spawn(Camera3dBundle {
        camera: Camera {
            hdr: true,
            ..default()
        },
        transform: Transform::from_xyz(-4.0, 5.0, 10.0).looking_at(Vec3::ZERO, Vec3::Y),
        ..default()
    });

    commands.spawn(
        TextBundle::from_section(INSTRUCTIONS, TextStyle::default()).with_style(Style {
            position_type: PositionType::Absolute,
            top: Val::Px(12.0),
            left: Val::Px(12.0),
            ..default()
        }),
    );
}
More examples
Hide additional examples
examples/3d/lighting.rs (line 149)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
fn setup(
    parameters: Res<Parameters>,
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
    asset_server: Res<AssetServer>,
) {
    // ground plane
    commands.spawn(PbrBundle {
        mesh: meshes.add(Plane3d::default().mesh().size(10.0, 10.0)),
        material: materials.add(StandardMaterial {
            base_color: Color::WHITE,
            perceptual_roughness: 1.0,
            ..default()
        }),
        ..default()
    });

    // left wall
    let mut transform = Transform::from_xyz(2.5, 2.5, 0.0);
    transform.rotate_z(PI / 2.);
    commands.spawn(PbrBundle {
        mesh: meshes.add(Cuboid::new(5.0, 0.15, 5.0)),
        transform,
        material: materials.add(StandardMaterial {
            base_color: INDIGO.into(),
            perceptual_roughness: 1.0,
            ..default()
        }),
        ..default()
    });
    // back (right) wall
    let mut transform = Transform::from_xyz(0.0, 2.5, -2.5);
    transform.rotate_x(PI / 2.);
    commands.spawn(PbrBundle {
        mesh: meshes.add(Cuboid::new(5.0, 0.15, 5.0)),
        transform,
        material: materials.add(StandardMaterial {
            base_color: INDIGO.into(),
            perceptual_roughness: 1.0,
            ..default()
        }),
        ..default()
    });

    // Bevy logo to demonstrate alpha mask shadows
    let mut transform = Transform::from_xyz(-2.2, 0.5, 1.0);
    transform.rotate_y(PI / 8.);
    commands.spawn((
        PbrBundle {
            mesh: meshes.add(Rectangle::new(2.0, 0.5)),
            transform,
            material: materials.add(StandardMaterial {
                base_color_texture: Some(asset_server.load("branding/bevy_logo_light.png")),
                perceptual_roughness: 1.0,
                alpha_mode: AlphaMode::Mask(0.5),
                cull_mode: None,
                ..default()
            }),
            ..default()
        },
        Movable,
    ));

    // cube
    commands.spawn((
        PbrBundle {
            mesh: meshes.add(Cuboid::default()),
            material: materials.add(StandardMaterial {
                base_color: DEEP_PINK.into(),
                ..default()
            }),
            transform: Transform::from_xyz(0.0, 0.5, 0.0),
            ..default()
        },
        Movable,
    ));
    // sphere
    commands.spawn((
        PbrBundle {
            mesh: meshes.add(Sphere::new(0.5).mesh().uv(32, 18)),
            material: materials.add(StandardMaterial {
                base_color: LIMEGREEN.into(),
                ..default()
            }),
            transform: Transform::from_xyz(1.5, 1.0, 1.5),
            ..default()
        },
        Movable,
    ));

    // ambient light
    commands.insert_resource(AmbientLight {
        color: ORANGE_RED.into(),
        brightness: 0.02,
    });

    // red point light
    commands
        .spawn(PointLightBundle {
            // transform: Transform::from_xyz(5.0, 8.0, 2.0),
            transform: Transform::from_xyz(1.0, 2.0, 0.0),
            point_light: PointLight {
                intensity: 100_000.0,
                color: RED.into(),
                shadows_enabled: true,
                ..default()
            },
            ..default()
        })
        .with_children(|builder| {
            builder.spawn(PbrBundle {
                mesh: meshes.add(Sphere::new(0.1).mesh().uv(32, 18)),
                material: materials.add(StandardMaterial {
                    base_color: RED.into(),
                    emissive: LinearRgba::new(4.0, 0.0, 0.0, 0.0),
                    ..default()
                }),
                ..default()
            });
        });

    // green spot light
    commands
        .spawn(SpotLightBundle {
            transform: Transform::from_xyz(-1.0, 2.0, 0.0)
                .looking_at(Vec3::new(-1.0, 0.0, 0.0), Vec3::Z),
            spot_light: SpotLight {
                intensity: 100_000.0,
                color: LIME.into(),
                shadows_enabled: true,
                inner_angle: 0.6,
                outer_angle: 0.8,
                ..default()
            },
            ..default()
        })
        .with_children(|builder| {
            builder.spawn(PbrBundle {
                transform: Transform::from_rotation(Quat::from_rotation_x(PI / 2.0)),
                mesh: meshes.add(Capsule3d::new(0.1, 0.125)),
                material: materials.add(StandardMaterial {
                    base_color: LIME.into(),
                    emissive: LinearRgba::new(0.0, 4.0, 0.0, 0.0),
                    ..default()
                }),
                ..default()
            });
        });

    // blue point light
    commands
        .spawn(PointLightBundle {
            // transform: Transform::from_xyz(5.0, 8.0, 2.0),
            transform: Transform::from_xyz(0.0, 4.0, 0.0),
            point_light: PointLight {
                intensity: 100_000.0,
                color: BLUE.into(),
                shadows_enabled: true,
                ..default()
            },
            ..default()
        })
        .with_children(|builder| {
            builder.spawn(PbrBundle {
                mesh: meshes.add(Sphere::new(0.1).mesh().uv(32, 18)),
                material: materials.add(StandardMaterial {
                    base_color: BLUE.into(),
                    emissive: LinearRgba::new(0.0, 0.0, 713.0, 0.0),
                    ..default()
                }),
                ..default()
            });
        });

    // directional 'sun' light
    commands.spawn(DirectionalLightBundle {
        directional_light: DirectionalLight {
            illuminance: light_consts::lux::OVERCAST_DAY,
            shadows_enabled: true,
            ..default()
        },
        transform: Transform {
            translation: Vec3::new(0.0, 2.0, 0.0),
            rotation: Quat::from_rotation_x(-PI / 4.),
            ..default()
        },
        // The default cascade config is designed to handle large scenes.
        // As this example has a much smaller world, we can tighten the shadow
        // bounds for better visual quality.
        cascade_shadow_config: CascadeShadowConfigBuilder {
            first_cascade_far_bound: 4.0,
            maximum_distance: 10.0,
            ..default()
        }
        .into(),
        ..default()
    });

    // example instructions
    let style = TextStyle::default();

    commands.spawn(
        TextBundle::from_sections(vec![
            TextSection::new(
                format!("Aperture: f/{:.0}\n", parameters.aperture_f_stops),
                style.clone(),
            ),
            TextSection::new(
                format!(
                    "Shutter speed: 1/{:.0}s\n",
                    1.0 / parameters.shutter_speed_s
                ),
                style.clone(),
            ),
            TextSection::new(
                format!("Sensitivity: ISO {:.0}\n", parameters.sensitivity_iso),
                style.clone(),
            ),
            TextSection::new("\n\n", style.clone()),
            TextSection::new("Controls\n", style.clone()),
            TextSection::new("---------------\n", style.clone()),
            TextSection::new("Arrow keys - Move objects\n", style.clone()),
            TextSection::new("1/2 - Decrease/Increase aperture\n", style.clone()),
            TextSection::new("3/4 - Decrease/Increase shutter speed\n", style.clone()),
            TextSection::new("5/6 - Decrease/Increase sensitivity\n", style.clone()),
            TextSection::new("R - Reset exposure", style),
        ])
        .with_style(Style {
            position_type: PositionType::Absolute,
            top: Val::Px(12.0),
            left: Val::Px(12.0),
            ..default()
        }),
    );

    // camera
    commands.spawn(Camera3dBundle {
        transform: Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
        exposure: Exposure::from_physical_camera(**parameters),
        ..default()
    });
}

pub const fn rgb(red: f32, green: f32, blue: f32) -> LinearRgba

Construct a new LinearRgba color from (r, g, b) components, with the default alpha (1.0).

§Arguments
  • red - Red channel. [0.0, 1.0]
  • green - Green channel. [0.0, 1.0]
  • blue - Blue channel. [0.0, 1.0]
Examples found in repository?
examples/math/sampling_primitives.rs (line 57)
57
58
59
const INSIDE_POINT_COLOR: LinearRgba = LinearRgba::rgb(0.855, 1.1, 0.01);
/// Color used for the points on the boundary
const BOUNDARY_POINT_COLOR: LinearRgba = LinearRgba::rgb(0.08, 0.2, 0.90);
More examples
Hide additional examples
examples/stress_tests/many_gizmos.rs (line 74)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
fn system(config: Res<Config>, time: Res<Time>, mut draw: Gizmos) {
    if !config.fancy {
        for _ in 0..(config.line_count / SYSTEM_COUNT) {
            draw.line(Vec3::NEG_Y, Vec3::Y, Color::BLACK);
        }
    } else {
        for i in 0..(config.line_count / SYSTEM_COUNT) {
            let angle = i as f32 / (config.line_count / SYSTEM_COUNT) as f32 * TAU;

            let vector = Vec2::from(angle.sin_cos()).extend(time.elapsed_seconds().sin());
            let start_color = LinearRgba::rgb(vector.x, vector.z, 0.5);
            let end_color = LinearRgba::rgb(-vector.z, -vector.y, 0.5);

            draw.line_gradient(vector, -vector, start_color, end_color);
        }
    }
}
examples/animation/color_animation.rs (line 47)
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
fn setup(mut commands: Commands) {
    commands.spawn(Camera2dBundle::default());

    // The color spaces `Oklaba`, `Laba`, `LinearRgba`, `Srgba` and `Xyza` all are either perceptually or physically linear.
    // This property allows us to define curves, e.g. bezier curves through these spaces.

    // Define the control points for the curve.
    // For more information, please see the cubic curve example.
    let colors = [
        LinearRgba::WHITE,
        LinearRgba::rgb(1., 1., 0.), // Yellow
        LinearRgba::RED,
        LinearRgba::BLACK,
    ];
    // Spawn a sprite using the provided colors as control points.
    spawn_curve_sprite(&mut commands, 275., colors);

    // Spawn another sprite using the provided colors as control points after converting them to the `Xyza` color space.
    spawn_curve_sprite(&mut commands, 175., colors.map(Xyza::from));

    spawn_curve_sprite(&mut commands, 75., colors.map(Oklaba::from));

    // Other color spaces like `Srgba` or `Hsva` are neither perceptually nor physically linear.
    // As such, we cannot use curves in these spaces.
    // However, we can still mix these colours and animate that way. In fact, mixing colors works in any color space.

    // Spawn a spritre using the provided colors for mixing.
    spawn_mixed_sprite(&mut commands, -75., colors.map(Hsla::from));

    spawn_mixed_sprite(&mut commands, -175., colors.map(Srgba::from));

    spawn_mixed_sprite(&mut commands, -275., colors.map(Oklcha::from));
}
examples/3d/bloom_3d.rs (line 44)
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn setup_scene(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    commands.spawn((
        Camera3dBundle {
            camera: Camera {
                hdr: true, // 1. HDR is required for bloom
                ..default()
            },
            tonemapping: Tonemapping::TonyMcMapface, // 2. Using a tonemapper that desaturates to white is recommended
            transform: Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
            ..default()
        },
        // 3. Enable bloom for the camera
        BloomSettings::NATURAL,
    ));

    let material_emissive1 = materials.add(StandardMaterial {
        emissive: LinearRgba::rgb(13.99, 5.32, 2.0), // 4. Put something bright in a dark environment to see the effect
        ..default()
    });
    let material_emissive2 = materials.add(StandardMaterial {
        emissive: LinearRgba::rgb(2.0, 13.99, 5.32),
        ..default()
    });
    let material_emissive3 = materials.add(StandardMaterial {
        emissive: LinearRgba::rgb(5.32, 2.0, 13.99),
        ..default()
    });
    let material_non_emissive = materials.add(StandardMaterial {
        base_color: GRAY.into(),
        ..default()
    });

    let mesh = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap());

    for x in -5..5 {
        for z in -5..5 {
            // This generates a pseudo-random integer between `[0, 6)`, but deterministically so
            // the same spheres are always the same colors.
            let mut hasher = DefaultHasher::new();
            (x, z).hash(&mut hasher);
            let rand = (hasher.finish() - 2) % 6;

            let material = match rand {
                0 => material_emissive1.clone(),
                1 => material_emissive2.clone(),
                2 => material_emissive3.clone(),
                3..=5 => material_non_emissive.clone(),
                _ => unreachable!(),
            };

            commands.spawn((
                PbrBundle {
                    mesh: mesh.clone(),
                    material,
                    transform: Transform::from_xyz(x as f32 * 2.0, 0.0, z as f32 * 2.0),
                    ..default()
                },
                Bouncing,
            ));
        }
    }

    // example instructions
    commands.spawn(
        TextBundle::from_section("", TextStyle::default()).with_style(Style {
            position_type: PositionType::Absolute,
            bottom: Val::Px(12.0),
            left: Val::Px(12.0),
            ..default()
        }),
    );
}

pub const fn with_red(self, red: f32) -> LinearRgba

Return a copy of this color with the red channel set to the given value.

pub const fn with_green(self, green: f32) -> LinearRgba

Return a copy of this color with the green channel set to the given value.

pub const fn with_blue(self, blue: f32) -> LinearRgba

Return a copy of this color with the blue channel set to the given value.

pub fn as_u32(&self) -> u32

Converts this color to a u32.

Maps the RGBA channels in RGBA order to a little-endian byte array (GPUs are little-endian). A will be the most significant byte and R the least significant.

Examples found in repository?
examples/2d/mesh2d_manual.rs (line 87)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
fn star(
    mut commands: Commands,
    // We will add a new Mesh for the star being created
    mut meshes: ResMut<Assets<Mesh>>,
) {
    // Let's define the mesh for the object we want to draw: a nice star.
    // We will specify here what kind of topology is used to define the mesh,
    // that is, how triangles are built from the vertices. We will use a
    // triangle list, meaning that each vertex of the triangle has to be
    // specified. We set `RenderAssetUsages::RENDER_WORLD`, meaning this mesh
    // will not be accessible in future frames from the `meshes` resource, in
    // order to save on memory once it has been uploaded to the GPU.
    let mut star = Mesh::new(
        PrimitiveTopology::TriangleList,
        RenderAssetUsages::RENDER_WORLD,
    );

    // Vertices need to have a position attribute. We will use the following
    // vertices (I hope you can spot the star in the schema).
    //
    //        1
    //
    //     10   2
    // 9      0      3
    //     8     4
    //        6
    //   7        5
    //
    // These vertices are specified in 3D space.
    let mut v_pos = vec![[0.0, 0.0, 0.0]];
    for i in 0..10 {
        // The angle between each vertex is 1/10 of a full rotation.
        let a = i as f32 * PI / 5.0;
        // The radius of inner vertices (even indices) is 100. For outer vertices (odd indices) it's 200.
        let r = (1 - i % 2) as f32 * 100.0 + 100.0;
        // Add the vertex position.
        v_pos.push([r * a.sin(), r * a.cos(), 0.0]);
    }
    // Set the position attribute
    star.insert_attribute(Mesh::ATTRIBUTE_POSITION, v_pos);
    // And a RGB color attribute as well
    let mut v_color: Vec<u32> = vec![LinearRgba::BLACK.as_u32()];
    v_color.extend_from_slice(&[LinearRgba::from(YELLOW).as_u32(); 10]);
    star.insert_attribute(
        MeshVertexAttribute::new("Vertex_Color", 1, VertexFormat::Uint32),
        v_color,
    );

    // Now, we specify the indices of the vertex that are going to compose the
    // triangles in our star. Vertices in triangles have to be specified in CCW
    // winding (that will be the front face, colored). Since we are using
    // triangle list, we will specify each triangle as 3 vertices
    //   First triangle: 0, 2, 1
    //   Second triangle: 0, 3, 2
    //   Third triangle: 0, 4, 3
    //   etc
    //   Last triangle: 0, 1, 10
    let mut indices = vec![0, 1, 10];
    for i in 2..=10 {
        indices.extend_from_slice(&[0, i, i - 1]);
    }
    star.insert_indices(Indices::U32(indices));

    // We can now spawn the entities for the star and the camera
    commands.spawn((
        // We use a marker component to identify the custom colored meshes
        ColoredMesh2d,
        // The `Handle<Mesh>` needs to be wrapped in a `Mesh2dHandle` to use 2d rendering instead of 3d
        Mesh2dHandle(meshes.add(star)),
        // This bundle's components are needed for something to be rendered
        SpatialBundle::INHERITED_IDENTITY,
    ));

    // Spawn the camera
    commands.spawn(Camera2dBundle::default());
}

Trait Implementations§

§

impl Add for LinearRgba

§

type Output = LinearRgba

The resulting type after applying the + operator.
§

fn add(self, rhs: LinearRgba) -> <LinearRgba as Add>::Output

Performs the + operation. Read more
§

impl AddAssign for LinearRgba

§

fn add_assign(&mut self, rhs: LinearRgba)

Performs the += operation. Read more
§

impl Alpha for LinearRgba

§

fn with_alpha(&self, alpha: f32) -> LinearRgba

Return a new version of this color with the given alpha value.
§

fn alpha(&self) -> f32

Return a the alpha component of this color.
§

fn set_alpha(&mut self, alpha: f32)

Sets the alpha component of this color.
§

fn is_fully_transparent(&self) -> bool

Is the alpha component of this color less than or equal to 0.0?
§

fn is_fully_opaque(&self) -> bool

Is the alpha component of this color greater than or equal to 1.0?
§

impl Animatable for LinearRgba

§

fn interpolate(a: &LinearRgba, b: &LinearRgba, t: f32) -> LinearRgba

Interpolates between a and b with a interpolation factor of time. Read more
§

fn blend(inputs: impl Iterator<Item = BlendInput<LinearRgba>>) -> LinearRgba

Blends one or more values together. Read more
§

fn post_process(&mut self, _world: &World)

Post-processes the value using resources in the World. Most animatable types do not need to implement this.
§

impl Clone for LinearRgba

§

fn clone(&self) -> LinearRgba

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl ColorToComponents for LinearRgba

§

fn to_f32_array(self) -> [f32; 4]

Convert to an f32 array
§

fn to_f32_array_no_alpha(self) -> [f32; 3]

Convert to an f32 array without the alpha value
§

fn to_vec4(self) -> Vec4

Convert to a Vec4
§

fn to_vec3(self) -> Vec3

Convert to a Vec3
§

fn from_f32_array(color: [f32; 4]) -> LinearRgba

Convert from an f32 array
§

fn from_f32_array_no_alpha(color: [f32; 3]) -> LinearRgba

Convert from an f32 array without the alpha value
§

fn from_vec4(color: Vec4) -> LinearRgba

Convert from a Vec4
§

fn from_vec3(color: Vec3) -> LinearRgba

Convert from a Vec3
§

impl ColorToPacked for LinearRgba

§

fn to_u8_array(self) -> [u8; 4]

Convert to [u8; 4] where that makes sense (Srgba is most relevant)
§

fn to_u8_array_no_alpha(self) -> [u8; 3]

Convert to [u8; 3] where that makes sense (Srgba is most relevant)
§

fn from_u8_array(color: [u8; 4]) -> LinearRgba

Convert from [u8; 4] where that makes sense (Srgba is most relevant)
§

fn from_u8_array_no_alpha(color: [u8; 3]) -> LinearRgba

Convert to [u8; 3] where that makes sense (Srgba is most relevant)
§

impl CreateFrom for LinearRgba

§

fn create_from<B>(reader: &mut Reader<B>) -> LinearRgba
where B: BufferRef,

§

impl Debug for LinearRgba

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Default for LinearRgba

§

fn default() -> LinearRgba

Construct a new LinearRgba color with the default values (white with full alpha).

§

impl<'de> Deserialize<'de> for LinearRgba

§

fn deserialize<__D>( __deserializer: __D, ) -> Result<LinearRgba, <__D as Deserializer<'de>>::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

impl Div<f32> for LinearRgba

§

type Output = LinearRgba

The resulting type after applying the / operator.
§

fn div(self, rhs: f32) -> <LinearRgba as Div<f32>>::Output

Performs the / operation. Read more
§

impl DivAssign<f32> for LinearRgba

§

fn div_assign(&mut self, rhs: f32)

Performs the /= operation. Read more
§

impl EuclideanDistance for LinearRgba

§

fn distance_squared(&self, other: &LinearRgba) -> f32

Distance squared from self to other.
§

fn distance(&self, other: &Self) -> f32

Distance from self to other.
§

impl From<Color> for LinearRgba

§

fn from(value: Color) -> LinearRgba

Converts to this type from the input type.
§

impl From<Hsla> for LinearRgba

§

fn from(value: Hsla) -> LinearRgba

Converts to this type from the input type.
§

impl From<Hsva> for LinearRgba

§

fn from(value: Hsva) -> LinearRgba

Converts to this type from the input type.
§

impl From<Hwba> for LinearRgba

§

fn from(value: Hwba) -> LinearRgba

Converts to this type from the input type.
§

impl From<Laba> for LinearRgba

§

fn from(value: Laba) -> LinearRgba

Converts to this type from the input type.
§

impl From<Lcha> for LinearRgba

§

fn from(value: Lcha) -> LinearRgba

Converts to this type from the input type.
§

impl From<LinearRgba> for Color

Available on crate feature wgpu-types only.
§

fn from(color: LinearRgba) -> Color

Converts to this type from the input type.
§

impl From<LinearRgba> for Color

§

fn from(value: LinearRgba) -> Color

Converts to this type from the input type.
§

impl From<LinearRgba> for Hsla

§

fn from(value: LinearRgba) -> Hsla

Converts to this type from the input type.
§

impl From<LinearRgba> for Hsva

§

fn from(value: LinearRgba) -> Hsva

Converts to this type from the input type.
§

impl From<LinearRgba> for Hwba

§

fn from(value: LinearRgba) -> Hwba

Converts to this type from the input type.
§

impl From<LinearRgba> for Laba

§

fn from(value: LinearRgba) -> Laba

Converts to this type from the input type.
§

impl From<LinearRgba> for Lcha

§

fn from(value: LinearRgba) -> Lcha

Converts to this type from the input type.
§

impl From<LinearRgba> for Oklaba

§

fn from(value: LinearRgba) -> Oklaba

Converts to this type from the input type.
§

impl From<LinearRgba> for Oklcha

§

fn from(value: LinearRgba) -> Oklcha

Converts to this type from the input type.
§

impl From<LinearRgba> for Srgba

§

fn from(value: LinearRgba) -> Srgba

Converts to this type from the input type.
§

impl From<LinearRgba> for Xyza

§

fn from(_: LinearRgba) -> Xyza

Converts to this type from the input type.
§

impl From<Oklaba> for LinearRgba

§

fn from(value: Oklaba) -> LinearRgba

Converts to this type from the input type.
§

impl From<Oklcha> for LinearRgba

§

fn from(value: Oklcha) -> LinearRgba

Converts to this type from the input type.
§

impl From<Srgba> for LinearRgba

§

fn from(value: Srgba) -> LinearRgba

Converts to this type from the input type.
§

impl From<Xyza> for LinearRgba

§

fn from(_: Xyza) -> LinearRgba

Converts to this type from the input type.
§

impl FromReflect for LinearRgba
where LinearRgba: Any + Send + Sync, f32: FromReflect + TypePath + RegisterForReflection,

§

fn from_reflect(reflect: &(dyn Reflect + 'static)) -> Option<LinearRgba>

Constructs a concrete instance of Self from a reflected value.
§

fn take_from_reflect( reflect: Box<dyn Reflect>, ) -> Result<Self, Box<dyn Reflect>>

Attempts to downcast the given value to Self using, constructing the value using from_reflect if that fails. Read more
§

impl GetTypeRegistration for LinearRgba
where LinearRgba: Any + Send + Sync, f32: FromReflect + TypePath + RegisterForReflection,

§

fn get_type_registration() -> TypeRegistration

Returns the default TypeRegistration for this type.
§

fn register_type_dependencies(registry: &mut TypeRegistry)

Registers other types needed by this type. Read more
§

impl Gray for LinearRgba

§

const BLACK: LinearRgba = Self::BLACK

A pure black color.
§

const WHITE: LinearRgba = Self::WHITE

A pure white color.
§

fn gray(lightness: f32) -> Self

Returns a grey color with the provided lightness from (0.0 - 1.0). 0 is black, 1 is white.
§

impl Luminance for LinearRgba

§

fn luminance(&self) -> f32

Luminance calculated using the CIE XYZ formula.

§

fn with_luminance(&self, luminance: f32) -> LinearRgba

Return a new version of this color with the given luminance. The resulting color will be clamped to the valid range for the color space; for some color spaces, clamping may cause the hue or chroma to change.
§

fn darker(&self, amount: f32) -> LinearRgba

Return a darker version of this color. The amount should be between 0.0 and 1.0. The amount represents an absolute decrease in luminance, and is distributive: color.darker(a).darker(b) == color.darker(a + b). Colors are clamped to black if the amount would cause them to go below black. Read more
§

fn lighter(&self, amount: f32) -> LinearRgba

Return a lighter version of this color. The amount should be between 0.0 and 1.0. The amount represents an absolute increase in luminance, and is distributive: color.lighter(a).lighter(b) == color.lighter(a + b). Colors are clamped to white if the amount would cause them to go above white. Read more
§

impl Mix for LinearRgba

§

fn mix(&self, other: &LinearRgba, factor: f32) -> LinearRgba

Linearly interpolate between this and another color, by factor. Factor should be between 0.0 and 1.0.
§

fn mix_assign(&mut self, other: Self, factor: f32)

Linearly interpolate between this and another color, by factor, storing the result in this color. Factor should be between 0.0 and 1.0.
§

impl Mul<LinearRgba> for f32

§

type Output = LinearRgba

The resulting type after applying the * operator.
§

fn mul(self, rhs: LinearRgba) -> <f32 as Mul<LinearRgba>>::Output

Performs the * operation. Read more
§

impl Mul<f32> for LinearRgba

§

type Output = LinearRgba

The resulting type after applying the * operator.
§

fn mul(self, rhs: f32) -> <LinearRgba as Mul<f32>>::Output

Performs the * operation. Read more
§

impl MulAssign<f32> for LinearRgba

§

fn mul_assign(&mut self, rhs: f32)

Performs the *= operation. Read more
§

impl Neg for LinearRgba

§

type Output = LinearRgba

The resulting type after applying the - operator.
§

fn neg(self) -> <LinearRgba as Neg>::Output

Performs the unary - operation. Read more
§

impl PartialEq for LinearRgba

§

fn eq(&self, other: &LinearRgba) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl ReadFrom for LinearRgba

§

fn read_from<B>(&mut self, reader: &mut Reader<B>)
where B: BufferRef,

§

impl Reflect for LinearRgba
where LinearRgba: Any + Send + Sync, f32: FromReflect + TypePath + RegisterForReflection,

§

fn get_represented_type_info(&self) -> Option<&'static TypeInfo>

Returns the TypeInfo of the type represented by this value. Read more
§

fn into_any(self: Box<LinearRgba>) -> Box<dyn Any>

Returns the value as a Box<dyn Any>.
§

fn as_any(&self) -> &(dyn Any + 'static)

Returns the value as a &dyn Any.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Returns the value as a &mut dyn Any.
§

fn into_reflect(self: Box<LinearRgba>) -> Box<dyn Reflect>

Casts this type to a boxed reflected value.
§

fn as_reflect(&self) -> &(dyn Reflect + 'static)

Casts this type to a reflected value.
§

fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)

Casts this type to a mutable reflected value.
§

fn clone_value(&self) -> Box<dyn Reflect>

Clones the value as a Reflect trait object. Read more
§

fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>>

Performs a type-checked assignment of a reflected value to this value. Read more
§

fn try_apply( &mut self, value: &(dyn Reflect + 'static), ) -> Result<(), ApplyError>

Tries to apply a reflected value to this value. Read more
§

fn reflect_kind(&self) -> ReflectKind

Returns a zero-sized enumeration of “kinds” of type. Read more
§

fn reflect_ref(&self) -> ReflectRef<'_>

Returns an immutable enumeration of “kinds” of type. Read more
§

fn reflect_mut(&mut self) -> ReflectMut<'_>

Returns a mutable enumeration of “kinds” of type. Read more
§

fn reflect_owned(self: Box<LinearRgba>) -> ReflectOwned

Returns an owned enumeration of “kinds” of type. Read more
§

fn reflect_partial_eq(&self, value: &(dyn Reflect + 'static)) -> Option<bool>

Returns a “partial equality” comparison result. Read more
§

fn apply(&mut self, value: &(dyn Reflect + 'static))

Applies a reflected value to this value. Read more
§

fn reflect_hash(&self) -> Option<u64>

Returns a hash of the value (which includes the type). Read more
§

fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Debug formatter for the value. Read more
§

fn serializable(&self) -> Option<Serializable<'_>>

Returns a serializable version of the value. Read more
§

fn is_dynamic(&self) -> bool

Indicates whether or not this type is a dynamic type. Read more
§

impl Serialize for LinearRgba

§

fn serialize<__S>( &self, __serializer: __S, ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl ShaderSize for LinearRgba

§

const SHADER_SIZE: NonZero<u64> = _

Represents WGSL Size (equivalent to ShaderType::min_size)
§

impl ShaderType for LinearRgba

§

fn min_size() -> NonZero<u64>

Represents the minimum size of Self (equivalent to GPUBufferBindingLayout.minBindingSize) Read more
§

fn size(&self) -> NonZero<u64>

Returns the size of Self at runtime Read more
§

fn assert_uniform_compat()

§

impl Struct for LinearRgba
where LinearRgba: Any + Send + Sync, f32: FromReflect + TypePath + RegisterForReflection,

§

fn field(&self, name: &str) -> Option<&(dyn Reflect + 'static)>

Returns a reference to the value of the field named name as a &dyn Reflect.
§

fn field_mut(&mut self, name: &str) -> Option<&mut (dyn Reflect + 'static)>

Returns a mutable reference to the value of the field named name as a &mut dyn Reflect.
§

fn field_at(&self, index: usize) -> Option<&(dyn Reflect + 'static)>

Returns a reference to the value of the field with index index as a &dyn Reflect.
§

fn field_at_mut(&mut self, index: usize) -> Option<&mut (dyn Reflect + 'static)>

Returns a mutable reference to the value of the field with index index as a &mut dyn Reflect.
§

fn name_at(&self, index: usize) -> Option<&str>

Returns the name of the field with index index.
§

fn field_len(&self) -> usize

Returns the number of fields in the struct.
§

fn iter_fields(&self) -> FieldIter<'_>

Returns an iterator over the values of the reflectable fields for this struct.
§

fn clone_dynamic(&self) -> DynamicStruct

Clones the struct into a DynamicStruct.
§

impl Sub for LinearRgba

§

type Output = LinearRgba

The resulting type after applying the - operator.
§

fn sub(self, rhs: LinearRgba) -> <LinearRgba as Sub>::Output

Performs the - operation. Read more
§

impl SubAssign for LinearRgba

§

fn sub_assign(&mut self, rhs: LinearRgba)

Performs the -= operation. Read more
§

impl TypePath for LinearRgba
where LinearRgba: Any + Send + Sync,

§

fn type_path() -> &'static str

Returns the fully qualified path of the underlying type. Read more
§

fn short_type_path() -> &'static str

Returns a short, pretty-print enabled path to the type. Read more
§

fn type_ident() -> Option<&'static str>

Returns the name of the type, or None if it is anonymous. Read more
§

fn crate_name() -> Option<&'static str>

Returns the name of the crate the type is in, or None if it is anonymous. Read more
§

fn module_path() -> Option<&'static str>

Returns the path to the module the type is in, or None if it is anonymous. Read more
§

impl Typed for LinearRgba
where LinearRgba: Any + Send + Sync, f32: FromReflect + TypePath + RegisterForReflection,

§

fn type_info() -> &'static TypeInfo

Returns the compile-time info for the underlying type.
§

impl VectorSpace for LinearRgba

§

const ZERO: LinearRgba = _

The zero vector, which is the identity of addition for the vector space type.
§

fn lerp(&self, rhs: Self, t: f32) -> Self

Perform vector space linear interpolation between this element and another, based on the parameter t. When t is 0, self is recovered. When t is 1, rhs is recovered. Read more
§

impl WriteInto for LinearRgba

§

fn write_into<B>(&self, writer: &mut Writer<B>)
where B: BufferMut,

§

impl Zeroable for LinearRgba

§

fn zeroed() -> Self

§

impl Copy for LinearRgba

§

impl Pod for LinearRgba

§

impl StructuralPartialEq for LinearRgba

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> CheckedBitPattern for T
where T: AnyBitPattern,

§

type Bits = T

Self must have the same layout as the specified Bits except for the possible invalid bit patterns being checked during is_valid_bit_pattern.
§

fn is_valid_bit_pattern(_bits: &T) -> bool

If this function returns true, then it must be valid to reinterpret bits as &Self.
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
§

impl<T> DynamicTypePath for T
where T: TypePath,

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> FromWorld for T
where T: Default,

§

fn from_world(_world: &mut World) -> T

Creates Self using data from the given World.
§

impl<S> GetField for S
where S: Struct,

§

fn get_field<T>(&self, name: &str) -> Option<&T>
where T: Reflect,

Returns a reference to the value of the field named name, downcast to T.
§

fn get_field_mut<T>(&mut self, name: &str) -> Option<&mut T>
where T: Reflect,

Returns a mutable reference to the value of the field named name, downcast to T.
§

impl<T> GetPath for T
where T: Reflect + ?Sized,

§

fn reflect_path<'p>( &self, path: impl ReflectPath<'p>, ) -> Result<&(dyn Reflect + 'static), ReflectPathError<'p>>

Returns a reference to the value specified by path. Read more
§

fn reflect_path_mut<'p>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut (dyn Reflect + 'static), ReflectPathError<'p>>

Returns a mutable reference to the value specified by path. Read more
§

fn path<'p, T>( &self, path: impl ReflectPath<'p>, ) -> Result<&T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed reference to the value specified by path. Read more
§

fn path_mut<'p, T>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed mutable reference to the value specified by path. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> NoneValue for T
where T: Default,

§

type NoneType = T

§

fn null_value() -> T

The none-equivalent value.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<R, P> ReadPrimitive<R> for P
where R: Read + ReadEndian<P>, P: Default,

source§

fn read_from_little_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
source§

fn read_from_big_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
source§

fn read_from_native_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> Serialize for T
where T: Serialize + ?Sized,

source§

fn erased_serialize(&self, serializer: &mut dyn Serializer) -> Result<(), Error>

source§

fn do_erased_serialize( &self, serializer: &mut dyn Serializer, ) -> Result<(), ErrorImpl>

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> TypeData for T
where T: 'static + Send + Sync + Clone,

§

fn clone_type_data(&self) -> Box<dyn TypeData>

§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> AnyBitPattern for T
where T: Pod,

§

impl<T> ConditionalSend for T
where T: Send,

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> GpuArrayBufferable for T

§

impl<T> NoUninit for T
where T: Pod,

§

impl<T> Settings for T
where T: 'static + Send + Sync,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSendSync for T
where T: WasmNotSend + WasmNotSync,

§

impl<T> WasmNotSync for T
where T: Sync,