Struct bevy::app::MainScheduleOrder

pub struct MainScheduleOrder {
    pub labels: Vec<Interned<dyn ScheduleLabel>>,
    pub startup_labels: Vec<Interned<dyn ScheduleLabel>>,
}
Expand description

Defines the schedules to be run for the Main schedule, including their order.

Fields§

§labels: Vec<Interned<dyn ScheduleLabel>>

The labels to run for the main phase of the Main schedule (in the order they will be run).

§startup_labels: Vec<Interned<dyn ScheduleLabel>>

The labels to run for the startup phase of the Main schedule (in the order they will be run).

Implementations§

§

impl MainScheduleOrder

pub fn insert_after( &mut self, after: impl ScheduleLabel, schedule: impl ScheduleLabel )

Adds the given schedule after the after schedule in the main list of schedules.

Examples found in repository?
examples/games/stepping.rs (line 45)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    fn build(&self, app: &mut App) {
        app.add_systems(Startup, build_stepping_hint);
        if cfg!(not(feature = "bevy_debug_stepping")) {
            return;
        }

        // create and insert our debug schedule into the main schedule order.
        // We need an independent schedule so we have access to all other
        // schedules through the `Stepping` resource
        app.init_schedule(DebugSchedule);
        let mut order = app.world_mut().resource_mut::<MainScheduleOrder>();
        order.insert_after(Update, DebugSchedule);

        // create our stepping resource
        let mut stepping = Stepping::new();
        for label in &self.schedule_labels {
            stepping.add_schedule(*label);
        }
        app.insert_resource(stepping);

        // add our startup & stepping systems
        app.insert_resource(State {
            ui_top: self.top,
            ui_left: self.left,
            systems: Vec::new(),
        })
        .add_systems(
            DebugSchedule,
            (
                build_ui.run_if(not(initialized)),
                handle_input,
                update_ui.run_if(initialized),
            )
                .chain(),
        );
    }
More examples
Hide additional examples
examples/ecs/custom_schedule.rs (line 37)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
fn main() {
    let mut app = App::new();

    // Create a new [`Schedule`]. For demonstration purposes, we configure it to use a single threaded executor so that
    // systems in this schedule are never run in parallel. However, this is not a requirement for custom schedules in
    // general.
    let mut custom_update_schedule = Schedule::new(SingleThreadedUpdate);
    custom_update_schedule.set_executor_kind(ExecutorKind::SingleThreaded);

    // Adding the schedule to the app does not automatically run the schedule. This merely registers the schedule so
    // that systems can look it up using the `Schedules` resource.
    app.add_schedule(custom_update_schedule);

    // Bevy `App`s have a `main_schedule_label` field that configures which schedule is run by the App's `runner`.
    // By default, this is `Main`. The `Main` schedule is responsible for running Bevy's main schedules such as
    // `Update`, `Startup` or `Last`.
    //
    // We can configure the `Main` schedule to run our custom update schedule relative to the existing ones by modifying
    // the `MainScheduleOrder` resource.
    //
    // Note that we modify `MainScheduleOrder` directly in `main` and not in a startup system. The reason for this is
    // that the `MainScheduleOrder` cannot be modified from systems that are run as part of the `Main` schedule.
    let mut main_schedule_order = app.world_mut().resource_mut::<MainScheduleOrder>();
    main_schedule_order.insert_after(Update, SingleThreadedUpdate);

    // Adding a custom startup schedule works similarly, but needs to use `insert_startup_after`
    // instead of `insert_after`.
    app.add_schedule(Schedule::new(CustomStartup));

    let mut main_schedule_order = app.world_mut().resource_mut::<MainScheduleOrder>();
    main_schedule_order.insert_startup_after(PreStartup, CustomStartup);

    app.add_systems(SingleThreadedUpdate, single_threaded_update_system)
        .add_systems(CustomStartup, custom_startup_system)
        .add_systems(PreStartup, pre_startup_system)
        .add_systems(Startup, startup_system)
        .add_systems(First, first_system)
        .add_systems(Update, update_system)
        .add_systems(Last, last_system)
        .run();
}

pub fn insert_startup_after( &mut self, after: impl ScheduleLabel, schedule: impl ScheduleLabel )

Adds the given schedule after the after schedule in the list of startup schedules.

Examples found in repository?
examples/ecs/custom_schedule.rs (line 44)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
fn main() {
    let mut app = App::new();

    // Create a new [`Schedule`]. For demonstration purposes, we configure it to use a single threaded executor so that
    // systems in this schedule are never run in parallel. However, this is not a requirement for custom schedules in
    // general.
    let mut custom_update_schedule = Schedule::new(SingleThreadedUpdate);
    custom_update_schedule.set_executor_kind(ExecutorKind::SingleThreaded);

    // Adding the schedule to the app does not automatically run the schedule. This merely registers the schedule so
    // that systems can look it up using the `Schedules` resource.
    app.add_schedule(custom_update_schedule);

    // Bevy `App`s have a `main_schedule_label` field that configures which schedule is run by the App's `runner`.
    // By default, this is `Main`. The `Main` schedule is responsible for running Bevy's main schedules such as
    // `Update`, `Startup` or `Last`.
    //
    // We can configure the `Main` schedule to run our custom update schedule relative to the existing ones by modifying
    // the `MainScheduleOrder` resource.
    //
    // Note that we modify `MainScheduleOrder` directly in `main` and not in a startup system. The reason for this is
    // that the `MainScheduleOrder` cannot be modified from systems that are run as part of the `Main` schedule.
    let mut main_schedule_order = app.world_mut().resource_mut::<MainScheduleOrder>();
    main_schedule_order.insert_after(Update, SingleThreadedUpdate);

    // Adding a custom startup schedule works similarly, but needs to use `insert_startup_after`
    // instead of `insert_after`.
    app.add_schedule(Schedule::new(CustomStartup));

    let mut main_schedule_order = app.world_mut().resource_mut::<MainScheduleOrder>();
    main_schedule_order.insert_startup_after(PreStartup, CustomStartup);

    app.add_systems(SingleThreadedUpdate, single_threaded_update_system)
        .add_systems(CustomStartup, custom_startup_system)
        .add_systems(PreStartup, pre_startup_system)
        .add_systems(Startup, startup_system)
        .add_systems(First, first_system)
        .add_systems(Update, update_system)
        .add_systems(Last, last_system)
        .run();
}

Trait Implementations§

§

impl Debug for MainScheduleOrder

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Default for MainScheduleOrder

§

fn default() -> MainScheduleOrder

Returns the “default value” for a type. Read more
§

impl Resource for MainScheduleOrder
where MainScheduleOrder: Send + Sync + 'static,

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Downcast<T> for T

§

fn downcast(&self) -> &T

§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<S> FromSample<S> for S

§

fn from_sample_(s: S) -> S

§

impl<T> FromWorld for T
where T: Default,

§

fn from_world(_world: &mut World) -> T

Creates Self using data from the given World.
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

§

fn into_sample(self) -> T

§

impl<T> NoneValue for T
where T: Default,

§

type NoneType = T

§

fn null_value() -> T

The none-equivalent value.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<R, P> ReadPrimitive<R> for P
where R: Read + ReadEndian<P>, P: Default,

source§

fn read_from_little_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
source§

fn read_from_big_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
source§

fn read_from_native_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

§

fn to_sample_(self) -> U

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<T> Upcast<T> for T

§

fn upcast(&self) -> Option<&T>

§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,

§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

§

impl<T> Settings for T
where T: 'static + Send + Sync,

§

impl<T> WasmNotSend for T
where T: Send,

§

impl<T> WasmNotSendSync for T
where T: WasmNotSend + WasmNotSync,

§

impl<T> WasmNotSync for T
where T: Sync,